

Fordham University
Department of Economics
Discussion Paper Series

Maximum Entropy Bootstrap Algorithm Enhancements

Hrishikesh D. Vinod

Fordham University, Department of Economics

Discussion Paper No: 2013-04
June 2013

Department of Economics

Fordham University
441 E Fordham Rd, Dealy Hall

Bronx, NY 10458
(718) 817-4048

Maximum Entropy Bootstrap Algorithm

Enhancements

Hrishikesh D. Vinod ⇤

June 25, 2013

Abstract

While moving block bootstrap (MBB) has been used for mildly
dependent (m-dependent) time series, maximum entropy (ME) boot-
strap (meboot) is perhaps the only tool for inference involving per-
fectly dependent, nonstationary time series, possibly subject to jumps,
regime changes and gaps. This brief note describes the logic and pro-
vides the R code for two potential enhancements to the meboot algo-
rithm in Vinod and López-de-Lacalle (2009), available as the ‘meboot’
package of the R software. The first ‘rescaling enhancement’ adjusts
the of meboot resampled elements so that the population variance of
the ME density equals that of the original data. Our second ‘sym-
metrizing enhancement’ forces the ME density to be symmetric. One
simulation involving inference for regression standard errors suggests
that the symmetrizing enhancement of the meboot continues to out-
perform the MBB.

Keywords: maximum entropy, block bootstrap, variance, symme-
try, R-software.

1 Introduction

Since the invention of iid bootstrap by Efron around 1979, bootstrap has
become a vital computer intensive tool for statistical inference (not estima-
tion). It is particularly suited for complicated problems where traditional

⇤Professor of Economics, Fordham University, Bronx, New York, USA 10458. E-mail:
vinod@fordham.edu.

1

(asymptotic) confidence intervals tend to be too wide, di�cult to construct
and unreliable in the absence of knowledge about the form of underlying
distributions.

Vinod (2006, ch.9) explains that traditional inference for time series based
on Wiener-Kolmogorov-Khintchine (WKK) theory using higher mathematics
was developed in the 1930’s, long before we had powerful computers. WKK
construct a population of time series called ensemble ⌦, heavily relying on
the stationarity assumption. The meboot algorithm o↵ers a new computer
intensive construction of ⌦ for applications where the time series is short,
non-stationary, perhaps with regime changes, gaps and jump discontinuities.
While the moving block bootstrap (MBB) has been used for mildly dependent
(m-dependent) series, maximum entropy bootstrap (meboot) is the only tool
for highly dependent nonstationary time series.

The next section introduces the meboot package algorithm of the free R
software in Vinod and López-de-Lacalle (2009) using a toy example included
here for completeness. Section 2 may be skipped by readers familiar with the
meboot algorithm. Sections 3 and 4 describe the rescaling and symmetrizing
enhancements along with complete R code for implementing them.

2 Review of the Maximum Entropy Bootstrap

Maximum entropy is a powerful tool for avoiding unnecessary distributional
assumptions. Let f(x) denote the density of x

t

. The entropy H is defined
as:

H = E(� log f(x)). (1)

The maximum entropy (ME) density is maximally noncommittal about un-
available information regarding its functional form. When the limits of the
support of f(x) are known, it is well known that the uniform functional form
is the ME density. In the context of the ME bootstrap we have a simple set of
T uniformly distributed mixture of finite pieces joined together into what we
call the ME density. Our ME density is further subject to mass and mean-
preserving constraints as described in Vinod (2006). A brief description of
the constraints follows.

Denote the order statistics of x
t

, t = 1, . . . , T by x(t). Let m
trm

denote
the ten percent (say) trimmed mean of absolute distances between consecu-
tive points |x

t

� x
t�1|. Assume that the researcher knows the overall finite

2

Figure 1: Toy ME density for x
t

= (4, 12, 36, 20, 8)

.

−10 0 10 20 30 40 50

0.01

0.02

0.03

0.04

0.05

x

de
nsi

ty

outer range of plausible limits x
t

2 [xLO = x(1) �m
trm

, xUP = x(T) +m
trm

],
supporting the ME density on the finite interval along the horizontal axis.

Figure 1 reproduces the ME density for a toy example used in Vinod and
López-de-Lacalle (2009).

Define z0 = xLO, zT = xUP, and

z
t

= 0.5(x(t) + x(t+1)), t = 1, . . . , T � 1, (2)

as midpoints of T intervals based on extrapolated data beyond the observed
range by the distance d

trm

along both sides of the range.
Next, define half open intervals:

I
t

= (z
t�1, zt], t = 1, . . . , T, (3)

of points around each observed x(t) from which we select the elements of our
resample. We have exactly T intervals, each of which contains exactly one
x(t) and our resample will contain one observation from each such interval
with probability 1/T .

The mass-preserving constraint says that, on an average, a fraction
1/T of the mass of the probability distribution must lie in each interval. The
“meboot” algorithm achieves this by giving an equal chance to each half open

3

interval I
t

defined in 3 of being included in the resample. The iid bootstrap
selects uniform pseudo-random numbers between [0,1], and transforms them
into a sequence of random integers in [1, T] to define the shu✏ed selection
from the set {x

t

}. Thus, the iid bootstrap gives each observation an equal
chance (1/T) of being included in the resample. The advantages of the
“meboot” are: (i) it uses the entire interval that contains the observation
and not necessarily the observation itself, and (ii) it uses the pseudo-random
numbers, not transformed integers.

The mean-preserving constraint (on order 1 moments of f(x)) is ⌃x
t

=
⌃x(t) = ⌃m

t

, where m
t

denote the mean of f(x) within the interval I
t

. This
property is satisfied by the iid bootstrap, since its f(x) is a delta function with
the mass (1/T) concentrated at x

t

in I
t

. The mean-preserving requirement is
a bit complicated for the “meboot,” since it requires that the mean m

t

in the
interval I

t

is equal to a weighted sum of the order statistic x(t) with weights
from the set {0.25, 0.50, 0.75} explained below. Theil and Laitinen (1980)
chose the following interval means, m

t

, to satisfy this constraint.

f(x) = 1/(z1 � z0), X 2 I(1), m1 = 0.75x(1) + 0.25x(2),

f(x) = 1/(z
k

� z
k�1), X 2 (z

k

� z
k�1],

with mean m
k

= 0.25x(k�1) + 0.50x(k) + 0.25x(k+1) (4)

for k = 2, . . . , T � 1,

f(x) = 1/(z
T

� z
T�1), X 2 I(T), m

T

= 0.25x(T�1) + 0.75x(T).

The intervals in equation (3) comprising the ME density as a mixture of
uniform densities have means m

t

defined in eq. (4) and the overall mean is
a weighted sum:

E(X) =
TX

t=1

m
t

/T = x̄, (5)

by construction of the mean preserving constraint. Vinod and López-de-
Lacalle (2009) describe a seven-step algorithm to create a large number J
of x(t,j), j = 1, . . . , J , analogous time series satisfying both mass and mean
preserving constraints. The algorithm retains the time-dependence of original
x
t

by additional steps whereby the x(t,j) and x
t

have unit rank correlation
coe�cient. The implementation details with examples are available in the
‘meboot’ package of the free software R.

4

We conclude this introductory section showing the practical usage of the
R function ‘meboot’ with the help of a toy example used in other papers. Let
x
t

= (4, 12, 36, 20, 8), for t = 1, . . . , T , respectively, having the mean x̄ = 16.
The following R code creates J resamples x(t,j) in a T⇥J matrix representing
the ensemble.

require(meboot)

set.seed(234)

x=c(4,12,36,20,8)

xtj=meboot(x,reps=4)$ensem

xtj

Now the order statistics are x(t) = (4, 8, 12, 20, 36). The trimmed mean of
absolute consecutive deviations is m

trm

= 15, leading to the following limits
z
t

of the T = 5 half-open intervals of eq. (3): z0 = xLO = (x(1)�m
trm

) = �11,
is the lower limit of the first interval. Now z1 to z4 = (6, 10, 16, 28) are
the intermediate limits. Finally, z

T

= xUP = (x(T) +m
trm

) = 51 is the upper
limit of the fifth interval.

The desired means of these intervals using (4) to ensure mean-preserving
constraint are: m

t

=(5, 8, 13, 22, 32), whose grand mean is 16 as desired.
The output of the above code provides the small ensemble ⌦ below.

> xtj

[,1] [,2] [,3] [,4]

[1,] -8.248707 4.101817 -14.61687 2.808591

[2,] 25.785338 19.475746 13.99363 13.284345

[3,] 27.950884 39.296600 14.90885 38.305254

[4,] 27.613262 39.106913 14.90408 26.451677

[5,] -4.264504 15.104922 13.72431 10.313860

The above code shows that it is easy to implement ‘meboot’. The toy example
has T = 5, J = 4 for brevity. A real world example will have a larger T and
usual J � 999 for a meaningful ensemble ⌦.

3 Scale Adjustment to the meboot algorithm

Theil and Laitinen (1980) show that under certain conditions when the two
tails are assumed to be exponentially distributed, the overall variance of the

5

ME density is smaller than �2
x

of the original data defined by:

�2
x

=
TX

t=1

(x
t

� x̄)2

T � 1
(6)

before any resampling to create the x(t,j), j = 1, . . . , J , series. As with the
usual bootstrap, the resamples are randomly chosen (iid) from the cumulative
distribution function associated with the ME density.

It is well known that the usual iid bootstrap sometimes uses a scale up
of observed regression residuals using a constant

p
[T/(T � p)] > 1 to make

their variance close to the variance of true regression errors, Vinod (2008,
p.395). In this subsection we investigate a new scale adjustment to the me-
boot algorithm to make the population variance of the ME density from
which resamples x(t,j) are chosen to equal �2

x

.
Let us begin by evaluating the conditional variance ‘within’ each half open

interval t = 1, . . . T :

�2
t

= var(X|X 2 {z
t�1, zt}) =

(z
t

� z
t�1)2

12
, (7)

from the properties of the uniform density.
Now the overall population variance of the ME density is obtained by the

sum of T expressions weighted by 1/T as:

�2
me

= E(X � x̄)2 =
1

T

TX

t=1

[(m
t

� x̄)2 + �2
t

]. (8)

upon adding the ‘between’ and ‘within’ sum of squares components of the
usual analysis of variance.

In general, it is di�cult to know exactly how much the theoretical uncon-
ditional variance var(X) of the ME density based on eq. (8) will di↵er from
the variance of x

t

in eq. (6) above. Fortunately, in our bootstrap context
we can compute both quantities from the available data and use them to
determine a suitable linear transformation of the ME bootstrap resamples
x(t,j) described below. Consider the ratio of the desired population standard
deviation in (6) to the population standard deviation from the ME density
in (8):

1 =
�
x

�
me

, (9)

6

where we would need to expand �2
me

only if 1 > 1 holds. If on the other hand,
we have 1 < 1, we must shrink the ME-density-based resampled elements
x(t,j) so that their variance equals the original variance of the time series �2

x

.
Hence, we can always use 1 to expand or shrink the variance of elements
x(t,j) from the ME density to the correct scale as needed. Unfortunately
simple scale change also changes the mean. Hence the following is needed to
ensure that the ‘mean preserving constraint’ remains satisfied.

Consider the following linear transformation:

y(t,j) = x(t,j) + (x(t,j) � x̄), (10)

having the following properties: (i) The population mean of transformed data
E(y(t,j)) = x̄ + (x̄ � x̄) = x̄. (ii) The transformation changes the variance
of x(t,j) according to the formula:

var(y(t,j)) = (1 +)2var(x(t,j)) = (1 +)2�2
me

. (11)

In our context, we want to transform x(t,j) derived from the ME density
[having population mean x̄ by mean preserving constraint and population
variance �2

me

] to y(t,j) with the same population mean x̄ and �2
x

as population
(not sample) variance. Next, we need to determine the appearing in the
transformation (10). In terms of standard deviations we want the to satisfy

p
[var(y(t,j))] = (1 +) �

me

, (12)

where the left side is simply �
x

. Hence using the definition (9) verify that

 = (1)� 1. (13)

Note that y(t,j) have a larger variance than x(t,j) as long as > 0. Now
we are ready to transform the resampled meboot values from x(t,j) to y(t,j) by
using (10) with the indicated choice of the scale factor from (13) in order to
adjust for the correct population variance without changing the population
mean. The steps described above are implemented in the R code given here
as a function called ‘findKapa.’

findKapa=function (x, trim = 0.1)

{ #find factor by which to multiply sd of each ensemble

n <- length(x)

xx <- sort(x)

7

ordxx <- order(x)

z <- rowMeans(embed(xx, 2))

dv <- abs(diff(as.numeric(x)))

dvtrim <- mean(dv, trim = trim)

xmin <- xx[1] - dvtrim

xmax <- xx[n] + dvtrim

aux <- colSums(t(embed(xx, 3)) * c(0.25, 0.5, 0.25))

desintxb <- c(0.75 * xx[1] + 0.25 * xx[2], aux,

0.25 * xx[n - 1] + 0.75 * xx[n])

zz=c(xmin,z,xmax)#extended list of z values

v=rep(NA,n) #storing within variances

for (i in 2: (n+1)){

v[i-1]=((zz[i]-zz[i-1])^2)/12

}

xb=mean(x)

s1=sum((desintxb-xb)^2)

uv=(s1+sum(v))/n

desired.sd=sd(x)

actualME.sd=sqrt(uv)

if (actualME.sd<=0) print("actualME.sd<=0 Error")

out=desired.sd/actualME.sd

return(out-1)

}

We shall see with the help of our toy example how to call the ‘findKapa’
function. Note that the does not depend on the seed used for random
number generation for the toy example, since our five x

t

values are fixed, not
random.

The steps in finding the for the toy example may be instructive. The
within interval variances using (7) for the toy example are: �2

t

= (24.083333,
1.333333, 3, 12, 44.083333), respectively. The ‘between interval’ variance
⌃(m

t

� x̄)2 = 486 is added to the sum of within variances (=84.5) to yield
the ME density population variance using eq. (8) to be �2

me

= 114.1, after
dividing by T = 5. We have 1 = �

x

/�
me

= 1.184178. The standard
deviation of x is over 18% higher than the population standard deviation
of the ME density. This suggests using = (1) � 1 = 0.184178 for this
example.

8

require(meboot)

set.seed(234)

x=c(4,12,36,20,8)

kap=findKapa(x);kap

xtj=meboot(x,reps=4, expand.sd=FALSE)$ensem

xbar=mean(x);xbar

ytj=xtj+kap*(xtj-xbar)

apply(ytj,2,sd) #report sd for y(t,j)

apply(ytj,2,mean)/apply(xtj,2,mean)

apply(ytj,2,sd)/apply(xtj,2,sd)

The abridged output from the code is:

> kap=findKapa(x);kap

[1] 0.1841785

> apply(ytj,2,sd) #report sd for y(t,j)

[1] 21.73192 18.30730 13.73703 16.70024

> apply(ytj,2,sd)/apply(xtj,2,sd)

[1] 1.184178 1.184178 1.184178 1.184178

Although some output is suppressed for brevity, note that = 0.184718
holds. Also, verify that our transformation changes only the population
variance. The sample standard deviation of y(t,j) for any particular j-th
resample (column of ytj) need not equal �

x

= 12.64911. The last reported
line of output above shows that the standard deviations of transformed data
get multiplied by the common factor 1.184718. The following code creates
a graphical representations of two resamples j = 1, 3 showing the e↵ect of
rescaling by .

par(mfrow=c(2,1))

my3=cbind(x, xtj[,1], ytj[,1])

matplot(my3, typ="l",xlab="time t", ylab="j=1",lwd=2)

title("Original data (solid line), meboot (dashed), scaled (dotted)")

my3=cbind(x, xtj[,3], ytj[,3])

matplot(my3, typ="l",xlab="time t", ylab="j=3",lwd=2)

title("Original data (solid line), meboot (dashed), scaled (dotted)")

Figure 2 plots the x
t

of the toy example (solid line) along with two real-
izations j = 1, j = 3 respectively in the upper and lower panels. The dashed

9

Figure 2: Resamples from toy example meboot and its scaled by version

.

1 2 3 4 5

5
15

25
35

time t

j=1

Original data (solid line), meboot (dashed), scaled (dotted)

1 2 3 4 5

0
10

20
30

time t

j=3

Original data (solid line), meboot (dashed), scaled (dotted)

line refers to the usual meboot resamples (without any enhancement) and
dotted line refers to its scaled (by version in both panels.

What is the motivation behind this scale adjustment? Given a time series
x
t

the unadjusted meboot constructs a large number J of similar time series
x(t,j) to form an ensemble of time series to represent the population of time
series using the ME density. Our scale adjustment from x(t,j) to y(t,j) makes
sure that the population variance of the transformed series equals �2

x

. This
seems to be intuitively desirable, at least in some cases.

The transformation further induces a similar scale adjustment to the sam-
pling distribution of a statistic under study. Since many of the sample statis-
tics have asymptotically Normal distributions (based on central limit theorem
type arguments), it may be desirable to have symmetric sampling distribu-
tions. This motivation leads to the next section.

4 Adjustment to make the ME density

Symmetric

This subsection considers another potentially useful adjustment to the me-
boot algorithm. Note that the ME density is not generally symmetric. How-

10

ever statistical inference usually relies on the symmetric Normal density. The
traditional confidence intervals use the symmetry when they cut o↵ a fixed
percent of realizations from both sides of a bootstrap approximation to the
sampling distribution.

Theil (1980) first considered this problem for a version of the ME density
having exponential tails. His derivation is based on the following property of
order statistics x(t) of symmetric densities when the mean is x̄: The sampling
distribution of x(t)�x̄ is the same as that of x̄�x(T+1�t). Let the symmetrized
version of original data be denoted by y

t

with order statistics y(t). Hence the
symmetrized order statistics are defined by:

y(t) = x̄+ 0.5[x(t) � x(T+1�t)] (14)

Recall the ‘meboot’ algorithm relies heavily on the order statistics x(t).
The modification to the algorithm would be replacing them by revised order
statistics y(t) in every relevant step. This seemingly innocuous change has a
noticeable e↵ect on the resampled values x(t,j) as can be seen from the plot
for a toy example where x

t

= (4, 12, 36, 20, 8), respectively.
The following code replaces the R function ‘meboot’ by a modified func-

tion called ‘mebootSym’ which provides an option to use the symmetric ver-
sion by setting the value of the argument ‘sym’ to be ‘TRUE’. The default
value is FALSE.

mebootSym=function (x, reps = 999, trim = 0.1,

reachbnd = TRUE, expand.sd = TRUE,

force.clt = TRUE, elaps = FALSE,

sym=FALSE, colsubj, coldata, coltimes,

...)

{

if ("pdata.frame" %in% class(x)) {

res <- meboot.pdata.frame(x, reps, trim, reachbnd, expand.sd,

force.clt, elaps, colsubj, coldata, coltimes, ...)

return(res)

}

ptm1 <- proc.time()

n <- length(x)

xx <- sort(x)

if (sym){

xxr=rev(xx) #reordered values

11

xx.sym=mean(xx)+0.5*(xx-xxr)#symmetrized order stats

xx=xx.sym #replace order stats by symmetrized ones

}

ordxx <- order(x)

z <- rowMeans(embed(xx, 2))

dv <- abs(diff(as.numeric(x)))

dvtrim <- mean(dv, trim = trim)

xmin <- xx[1] - dvtrim

xmax <- xx[n] + dvtrim

aux <- colSums(t(embed(xx, 3)) * c(0.25, 0.5, 0.25))

desintxb <- c(0.75 * xx[1] + 0.25 * xx[2], aux, 0.25 * xx[n -

1] + 0.75 * xx[n])

ensemble <- matrix(x, nrow = n, ncol = reps)

ensemble <- apply(ensemble, 2, meboot.part,

n, z, xmin, xmax,

desintxb, reachbnd)

qseq <- apply(ensemble, 2, sort)

ensemble[ordxx,] <- qseq

if (expand.sd)

ensemble <- expand.sd(x = x, ensemble = ensemble, ...)

if (force.clt)

ensemble <- force.clt(x = x, ensemble = ensemble)

if (is.ts(x)) {

ensemble <- ts(ensemble, frequency = frequency(x),

start = start(x))

dimnames(ensemble)[[2]] <- paste("Series", 1:reps)

}

ptm2 <- proc.time()

elapsr <- elapsedtime(ptm1, ptm2)

if (elaps)

cat("\n Elapsed time:", elapsr$elaps, paste(elapsr$units,

".", sep = ""), "\n")

list(x = x, ensemble = ensemble, xx = xx, z = z, dv = dv,

dvtrim = dvtrim, xmin = xmin, xmax = xmax,

desintxb = desintxb,

ordxx = ordxx, elaps = elapsr)

}

12

After entering the above code in R the following code calls the function
mebootSym for the toy example mentioned earlier.

x=c(4,12,36,20,8)

require(meboot)

out1=meboot(x,reps=4)

out3=mebootSym(x,reps=4,sym=TRUE)

Now the code to produce a graph for the toy example is given below.

par(mfrow=c(2,1))

my3=cbind(x, out1$ens[,1], out3$ens[,1])

matplot(my3, typ="l",xlab="time t", ylab="j=1", lwd=2)

title("Original data (solid line), meboot (dashed),

symmetric (dotted)")

my3=cbind(x, out1$ens[,3], out3$ens[,3])

matplot(my3, typ="l",xlab="time t", ylab="j=3", lwd=2)

title("Original data (solid line), meboot (dashed),

symmetric (dotted)")

Figure 3 plots the x
t

of the toy example (solid line) along with two real-
izations j = 1, j = 3 respectively in the upper and lower panels. The dashed
line refers to the usual meboot resamples (without any enhancement) and
dotted line refers to its symmetric version in both panels.

In conclusion, it is not obvious exactly when the enhancements suggested
in this note are needed and worthwhile. Of course, it would be interesting to
check them in the context of simulation designs in Vinod (2012) and Vinod
(2010) where they already support traditional meboot. The enhancements
do seem to be intuitively useful in many situations. I invite readers to send
me applications where traditional meboot provides too narrow confidence in-
tervals, where the rescaling enhancement may be worth a try. Also, when the
sampling distribution of the statistic under study is known to be symmetric,
the symmetrizing enhancement is worth a try.

In one large experiment involving inference regarding the standard er-
rors of regression coe�cients, I found that the symmetric version of meboot
continues to outperform the moving block bootstrap. Simulation details are
omitted here since the experiment requires too much space to describe and
does not explicitly compare the symmetrizing enhancement with the tradi-
tional bootstrap. While I am planning to perform such simulations in the
future, my purpose here to provide usable code to potential users.

13

Figure 3: Resamples from toy example meboot and its symmetric version

.

1 2 3 4 5

−10
10

30

time t

j=1

Original data (solid line), meboot (dashed),
symmetric (dotted)

1 2 3 4 5

−10
10

30

time t

j=3

Original data (solid line), meboot (dashed),
symmetric (dotted)

References

Theil, H. (1980), “The Symmetric Maximum Entropy Distribution,” Eco-
nomics Letters, 6, 53–57.

Theil, H. and Laitinen, K. (1980), “Singular Moment Matrices in Applied
Econometrics,” in “Multivariate Analysis – V,” , ed. Krishnaiah, P., New
York, USA: North USA-Holland Publishing Co., pp. 629–649.

Vinod, H. D. (2006), “Maximum entropy ensembles for time series inference
in economics,” Journal of Asian Economics, 17(6), 955–978.

— (2008), Hands-on Intermediate Econometrics Using R: Templates for
Extending Dozens of Practical Examples, Hackensack, NJ: World Sci-
entific, iSBN 10-981-281-885-5, URL http://www.worldscibooks.com/

economics/6895.html.

— (2010), “New Solution to Time Series Inference in Spurious Regression
Problems,” SSRN eLibrary, URL http://ssrn.com/paper=1560074.

— (2012), “Constructing Scenarios of Time Heterogeneous Series for Stress
Testing,” SSRN eLibrary, URL http://ssrn.com/paper=1987879.

14

http://www.worldscibooks.com/economics/6895.html
http://www.worldscibooks.com/economics/6895.html
http://ssrn.com/paper=1560074
http://ssrn.com/paper=1987879

Vinod, H. D. and López-de-Lacalle, J. (2009), “Maximum Entropy Bootstrap
for Time Series: The meboot R Package,” Journal of Statistical Software,
29, 1–19, URL http://www.jstatsoft.org/v29/i05/.

15

http://www.jstatsoft.org/v29/i05/

