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Abstract
A central issue for managers or investors in portfolio management of assets is to 

select the assets to be included and to predict the value of the portfolio, given a 
variety of historical and concurrent information regarding each asset in the portfolio.  
There exist several criteria or models to predict asset returns, which in turn are 
sensitive to underlying probability distributions, their unknown parameters, whether 
it is a bull, bear or flat period subject to further uncertainty regarding switch times 
between bull and bear periods.  It is possible to treat various portfolio-choice 
criteria as multiple criterion systems in the uncertain world of asset markets from 
historical market data.  This paper develops the initial framework for the selection 
of assets using information fusion to combine these multiple criterion systems.  
These MCS’ are combined, using the recently developed Combinatorial Fusion 
Analysis (CFA) to enhance the portfolio performance.  We demonstrate with an 
example using US stock market data that combination of multiple criteria (or models) 
systems does indeed improve the portfolio performance.

JEL classification G11; C14; D81
Keywords: Rank-score function, combinatorial fusion, stock performance, return of equity

1.Introduction
In managing a portfolio system, investors (or managers) aim to assemble a portfolio which 

can achieve the highest possible (optimal) return.  However, perfect optimality is an elusive 
goal in the uncertain world of asset markets based on past data, since the past data cannot reveal 
what the future might hold. Based on information such as historical performance of each of the 
assets, the investor uses different criteria or models to select assets to be included in the 
portfolio.  A variety of criteria have been used such as: price/earning (P/E ratio), earnings per 
share (EPS), price/book value (P/BV) ratio, net margin, (net income/net revenue) ratio, and many 
others.  The two most popular models for portfolio management are the Capital Asset Pricing 
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Model (CAPM) and the Arbitrage Pricing Theory (APT). Both rely on the mean-variance 
interrelationship among the assets in the portfolio. It is possible to incorporate utility theory into 
risk management, some non-linear structures such as neural networks have also been used to 
forecast returns, Vinod and Reagle (2005).  

If the market uncertainty could be characterized by the bell-shaped normal distribution, 
mean-variance models do indeed yield optimal portfolios. It is possible to view the market 
uncertainty as a matter of picking the right model for a probability distribution. For example, the 
Pearson family of distributions can yield a very large variety of shapes based on a handful of 
parameters.  More generally, there are lognormal, inverse-gaussian, Azzalini skew-normal, 
Pareto-Levy-type stable distributions. Again, if one knew the correct parameters of the correct 
probability distribution describing the future market, the optimal portfolio can be obtained,
Vinod and Reagle (2005). Unfortunately, there remains uncertainty regarding the choice of the 
correct distribution. Asset market professionals often distinguish between bull, bear and flat 
markets for various assets at various times, noting that different kinds of uncertainty (probability 
distributions) apply for bull versus bear markets, while they obsess about the switch from a bull 
to bear market and vice versa.  Even if we know the right probability distribution, one needs to 
contend with estimation uncertainty, (See Vinod and Reagle (2005), Vinod and Morey (2001, 
2002)) about the parameters of the probability distribution based on limited historical data.  In 
short, the “information” contained in historical market data is difficult to use as the number of 
model choices and underlying uncertainty increases. Let us view the stock market data as huge 
and diverse, ready to be exploratory “mined.”  Following computer scientists, we can also 
abandon the search for optimality and view portfolio choice in the absence of fully known 
probability models as a guided application of a computer algorithm.

In this paper, we propose to use the Combinatorial Fusion Algorithm (CFA) in the selection 
of assets to be included in a portfolio (Hsu, Chung and Kristal (2006)).  More specifically, the 
criteria (or models) to select an asset are considered a set of multiple criterion or scoring systems 
(MCS or MSS), each of which is a function on the set of assets.  These functions are in the form 
of score functions and/or rank functions.  When the set of MSS’ is too big, it needs to be 
reduced according to certain criteria.  Once it is small enough (five is considered a manageable 
size), the systems are combined using a mathematical combinatorial algorithm, where both ‘rank 
combination’ and ‘score combination’ are considered.  When there are n MSS’, we consider 2n

– 1 – n combinations for rank and 2n – 1 – n combinations for score combination.  Our method 
differs from other combination methods, e.g., those stated in Hazarika and Taylor (2001), in at 
least three aspects: (1) for each system, we use both score function and rank function, (2) for an 
n-size MSS’ with a large n, we reduce the MSS’ into smaller size.  Then for smaller n-size 
MSS’, we consider all 2(2n-n-1) possible combinations in order to search for the ones in which 
the combined system performs better than or equal to the individual system, and (3) we use the 
concept of a rank-score function to compute diversity between these MSS’.

In Section 2, we describe the method of combinatorial fusion analysis in the context of 
portfolio management.  Then in Section 3, we describe the experiment including the data set, 
the criteria used, and the results.  Section 4 concludes the paper with possible future work.
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2. Combinatorial Fusion Analysis

Let A be set of  n  assets a1, a2, . . ., an.  Let M1, M2, . . ., Mp be a set of p multiple 
criteria (or models).   For each model M, we define a score function sM on A such that sM(a) is a 
real number in R. By looking at each model criteria we must first make sure that the scores 
themselves have monotonic similarities.  For example, the criterion price earnings (PE) ratio, 
(where lower the PE ratio the better) is monotonically dissimilar to the criterion of earnings per 
share (EPS, where higher is better). One can achieve monotonic similarity by simply changing 
the signs of all scores under the PE ratio criterion to negative.  

Treating sM(a), a  A, as an array of n numbers and sorting the array would lead to a rank
function rM on A such that rM(a) is a natural number in N = [1,. ., n].  In order for all the score 
functions sM to be comparable, especially when they will be combined later, the function sM is 
normalized to take values in [0,1]. 

For a set of p multiple models {M1, M2, . . ., Mp }, Hsu, Chung and Kristal (2006) describes 
several ways of combination.  In this paper, we use only the average combination because we 
emphasize more on comparing rank and score combinations Hsu and Taksa (2005).  For the set 
of p models M1, M2, . . ., Mp, we define the score function of the score combined model SC as:

sSC(a) =  ( ∑p
i=1 sMi(a)) /p (1)

Sorting the array sSC(a) into decreasing order would give rise to the rank function of the score 
combined model SC, written as rSC.  Similarly, we define the score function of the rank 
combined model RC as:

sRC(a) = =  (∑p
i=1 rMi(a)) /p. (2)

Sorting this array sRC(a) into increasing order gives rise to the rank functions of the rank 
combined model RC, written as rRC. 

For each criterion M, let P(M) be the performance of M.  We are most interested in the 
combination C,  where C = C(M1, M2, . . . Mp ) so that P(C)≥ max {P(Mi)}).   We will call 
these as positive cases.  If P(C)> max {P(Mi)} will call these as strictly positive cases. If
P(C)< max {P(Mi)} will call these as strictly negative cases.  Obviously, our approach is 
successful if we find portfolio combinations leading to definitive performance improvements as 
revealed by strictly positive cases.

Combinatorial fusion analysis has been used in information retrieval and virtual screening 
(See Hsu and Taska, (2005), Ng and Kantor (2000) and Yang et al (2005)) with several 
applications in natural sciences.  The framework of CFA and a survey is given in Hsu, Chung 
and Kristal (2006). We can exploit some established results listed in following remarks to help 
choose a good portfolio. The established results (stated here without proof or further explanation) 
exhibit the following phenomena for multiple scoring systems:
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Remark A:
(1) Combining multiple scoring systems would improve the performance only if:

(a) individual systems have relatively good performance, and 
(b) individual systems are diverse, and

(2) rank combination performs better than score combination under certain conditions.

The diversity between systems M1 and M2, d(M1,Md), used above in Remark A(1)(b) is defined 
as follows:

Remark B:  The diversity between systems M1 and M2, d (M1, M2), is defined as either:
(1) d(M1, M2) = d(sM1, sM2) = correlation between sM1 and sM2,
(2) d(M1, M2) =d(rM1, rM2) = rank correlation between rM1 and rM2, or
(3) d(M1, M2) =d(fM1, fM2), where 

 fM is the rank-score function defined by fM : N = |A| —> [0,1] so that 

fM(i) = sM(rM
-1(i)) = (sM o rM

-1)(i) (3)
                                                     

The graph of the rank-score function fM is the graph fM with rank as the x-coordinate and score as 
the y-coordinate.  In Remark B(2), the rank correlation d(rM1, rM2) can have different definitions 
including  Kendall’s  (tau) coefficient or Spearman’s  (rho) coefficient.  Likewise, the 
difference (or diversity) between rank-score functions fM1 and fM2 can exist in several different 
forms.  In Yang et al (2005) they used the formula:

d(fM1, fM2) =( ∑ (1/n)n
i=1 (fM1(i) – fM2(i))

2)1/2 (4)

Let P (A) denote the performance of criterion A.  The pair wise performance ratio of low to 
high is defined as PR(A, B) = Pl / Ph = min{ P (A), P (B)} / max{ P (A), P (B)}. A graphical 
insight is gained in this literature by a diversity-performance graph, which plots Pl / Ph on the 
horizontal axis and suitably defined pair wise distance or diversity on the vertical axis. The 
strictly positive cases where fusions lead to strictly superior performance are indicated by circles 
(“o”) and negative cases indicated by (‘x’) graphic symbols.  Past experience and experiments 
suggests that circles are usually toward the North East area of the diversity-performance graph 
and x’s are found in the South West area.  This seems to support the statement in Remark 
(A)(1) for necessary conditions for improving the performance of the combination.

3. An Illustrative Example as an Experiment

A multi-step algorithm begins with defining the data set, chooses performance measure 
(return on equity or ROE) to be used for comparing portfolios.  Admittedly, we do not expect 
universal agreement on the choice of ROE as ultimate performance criterion.  However, for the 
purpose of our experiment, the reader should accept as a reasonable choice.  In all, we have 
nine criteria. The algorithm uses the union of potential criteria to focus on 5 out of 9 criteria 
using Remark A(1)(a).  We have 25 – 1 – 5 = 26 rank combinations and 26 score combinations 
for 126 (9 choose 5) groups. The notion of groups is new and will be explained later with the 
help of our illustrative example when we describe the algorithm. The results lead to explicit 
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choice of stocks. We try to gain insights from rank-score function and diversity-performance 
graphs which are similar to those in related literature.  The details of the algorithm using the 
open source R package for this purpose are given in Section 3.2. It was implemented almost 
immediately on a PC with a 2Ghz processor.

3.1  Description of the Data Set:
Our data are from Prof. Aswath Damodaran’s website at the Stern Business School of New York 
University.
http://pages.stern.nyu.edu/~adamodar/New_Home_Page/data.html
The original data source is Value Line Inc.  The site reports data for 7113 stocks (identified by 
ticker symbols and row numbers) along 7113 rows of an EXCEL workbook having 72 columns.  
The workbook columns are potential stock selection criteria involving the usual financial 
statistics including the PE ratio obtained by dividing the company's share price by its earnings 
per share (EPS), or Price to book value (PBV) ratio as the ratio of market value of equity to book 
value of equity.  The PBV is a measure of shareholders’ equity in the balance sheet of a 
company.  For our illustration we select data from the following nine criteria with following 
names and associated symbolic abbreviations used in our discussion below:

[A]=Trailing PE, [B]=Forward EPS, [C]=Forward PE, [D]=PBV Ratio, [E]=Ratio of Enterprise 
value (EV) to Invested Capital, [F]=Value to B.V. of Capital, [G]=Growth in EPS during the last 
5 years, [H]=Growth in Revenue last year, and finally, [K]=Net Margin.

       Recall that we have selected Return on equity (ROE) available along the 39th column in 
the workbook as our performance measure associated with each stock. When we construct an 
abridged data matrix we place the nine criteria along nine columns and the performance ROE as 
the tenth column.  We have considered other performance measures with similar results, not 
reported here for brevity.

       Many rows in the original workbook had missing data (or NA’s) or zeros for the 
relevant ten columns. We clean out all those rows (remove stocks) from the workbook. Although 
we start with 7113 rows in the workbook, we end up with only 1129 rows in the abridged 
workbook focusing on nine criteria and ROE.  Note that we now have 1129 stocks as 
candidates for inclusion in our ideal portfolio.

       In order to ensure that each of the multiple systems satisfy 'monotonic similarity', that is, 
they satisfy  the same increasing or decreasing norm, i.e. the bigger the better, we multiply 
values in these nine columns (A,..H, K) by the vector c(-1,1,-1,-1,1,1,1,1,1), where (-1) means it 
is desirable to have smaller values.  For example, since it is desirable to have a small price 
earnings ratio, we multiply the column for A=Trailing PE by -1, as indicated.  Similarly we 
change the sign of values in columns for C=Forward PE and D=PBV Ratio. In the end, we make 
sure that all columns have numbers so that bigger values are preferred by investors.

3.2 Description of the Steps in Our Algorithm:
(1) Defining scores and computing their ranks
The 1129 data values in the nine columns for (A,..H, K) are called a vector of “scores” achieved 
by that stock under that criterion.  Next, we rank these values from the smallest to the largest in 
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an ascending order so that larger rank has a larger score number to yield a similar 1129 1 vector 
of “ranks”.

(2) Choosing the best 113 stocks implicitly recommended by each criterion
We now have best stocks along the bottom rows for each criterion in terms of scores as well as 
ranks. Of course, at this point the rank contains no additional information beyond what is 
contained in the score vector.  However, this will change later.  Among our 1129 (cleaned up 
rows) of stocks we now choose 10 % or 113 stocks situated along the bottom rows (bigger the 
better!) for both scores and ranks. These 113 stocks are possible candidates to be selected in our 
final portfolio of stocks.  

(3) Union of all potentially desirable stocks.
Next step is to consider a union of the 113 stocks recommended by each of the nine criteria with 
possibly 113*9=1017 stocks.  Of course, even if the criteria (A,..H, K) are distinct, same stocks 
are implicitly recommended (i.e., among the top 113) by more than one criteria.  In our example 
the union contains n=584 stocks and 433 repetitions.

(4) Scaled Scores.
In the sequel, it is important to make the nine criteria numerically comparable to each other in 
suitable units before any fusion can take place. For this purpose, we normalize the scores by each 
criterion to the closed interval [0,1], by using the standard linear interpolation formula. If we 
start with score numbers x and denote LO=min(x) and UP=max(x), then the normalized 
(rescaled) values of x are given by: y=(x-LO)/(UP-LO). After this rescaling, the units are 
comparable and simple averages of these numbers in columns A to H can be considered for the 
purpose of potential combinations of criteria.  Despite rescalings, it is convenient to refer to the 
rescaled scores as simply scores.

(5) Procedure for the one-criterion-at-a-time case.
Next, we bring in the data on ROE performance in the tenth column for each stock into the 
memory. Assuming we are using only one criterion at a time (A, B, ..H, K), we compute the 
ROE performance for each stock recommended by each criterion.  Towards this end, we create 
a matrix M3 with 3 columns. The first column has numbers 1 to n (=584), the second column has 
either the score values or the ranks and the last column has the ROE.  We sort this entire M3 
matrix on the second column, so that the best stocks will again be at the bottom of the matrix.  
Now we select the best 10% stocks by each criterion and compute the ‘average ROE’ for these 
chosen stocks along columns using the abbreviations (A,.., H, K).

       When the second column of M3 is the score, we have one number for each of the nine 
criteria representing the ‘average ROE’ if the investor relied solely on that criterion to choose her 
stocks.  We do the same when the second column of M3 contains ranks. A check on our 
programming is that the average ROE should be exactly the same whether we use scores or ranks 
in this case when we have only one criterion at a time (before we combine them by a fusion 
algorithm).

       In traditional method of portfolio selection this is the end of story. It is, however, only 
the beginning under our proposal. Instead of being satisfied with choosing only one criterion at a 
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time, we consider combinations of two or more criteria. For simplicity the combinations 
considered in this paper are simple averages, but weighted averages can be considered without 
loss of generality.

(6) Procedure for the two-criteria-at-a-time case.
Recall that we are working with a set of 584 chosen stocks from the union such that each row has 
a unique ticker symbol and a unique performance measure ROE.  Assuming we are going to 
combine two criteria at a time, we compute the ROE performance for each stock recommended 
by each pair.  There are (9 Choose 2) or 36 possible pairs of criteria from (A, B, C, D, E, F, G, 
H, K). For example, AB, AC, AD, AE, etc. For each such pair we create a matrix M3 with 3 
columns similar to Step 5. The first column has numbers 1 to n (=584), the second column has 
either the average of two score values (or the average of two ranks) and the last column still has 
the ROE for that stock.  We sort this entire M3 matrix on the second column, so that the best 
ones will again be at the bottom of the matrix.  Now we select the best 10% stocks for each 
paired criterion (residing along the bottom 10% of the rows) and compute the average ROE for 
these chosen stocks.

       Each pair (out of the 36 possible pairs of criteria) yields one ROE number when the 
second column of the M3 matrix has the average score of two criteria (e.g., simply average the 
score for A and B). In all, with 36 pairs we have 36 ROE numbers and additional 36 ROE 
numbers when the second column of M3 is the average rank based on two criteria (AB, AC, AD, 
…).  It is perhaps not obvious  that, unlike the one-at-a-time case above, the ROE numbers 
(hence recommended stocks) are different when the second column of M3 contains average 
scores instead of ranks.

       Compared to the traditional method of choosing one criterion at a time, the fusion 
algorithm is ahead of the game if we have the strictly higher ROE for any combination of two 
criteria at a time. For our example, the combination of criteria A and E is often found to be 
superior to A or E alone.

(7) Procedure for the general k-criteria-at-a-time case.
We are still working with the set of 584 chosen stocks from the union such that each row has a
unique ticker symbol and unique performance measure ROE. From the set (A, B, C, D, E, F, G, 
H, K), if we have k=3 criteria at a time we must enumerate all 84 choices similar to ABC, ACD, 
ADE, etc.  Similarly, for both k=4 and 5 we enumerate 126 possible combinations like (ABCD, 
ACDE, ADEF, etc) and 126 combinations like (ABCDE, ABCDF, ABCDG, ..) In general, there 
are (9 Choose k, or ‘9Ck’)=(84, 126, 126) possible criteria for k=3,4,5, respectively.  For each 
k-at-a-time fusion set we again create a matrix M3 with 3 columns. The first column has 
numbers 1 to n (=584), the second column has either the average of k score values or the average 
of k ranks (belonging to that set) and the last column still has the ROE for that stock.  We 
always sort this entire M3 matrix on the second column, so that the best will again be at the 
bottom of the matrix.  Now we select the best 10% stocks for each k-at-a-time fusion set and 
compute the average ROE for these chosen stocks.

Each of the ‘9Ck’ possible k-at-a-time fusion sets yields ‘9Ck’ ROE numbers when the second 
column of M3 is the average score of the included k criteria and additional  ‘9Ck’ ROE 
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numbers when the second column of M3 matrix contains the average rank of the k criteria 
included in that fusion.  

After finishing this for k=1 to 5 we will have 2*381=762 ROE numbers for each stock associated 
with the nine criteria (A to H and K) and their fusions involving k at a time, where the doubling 
is needed because we have score-based numbers as well as rank-based numbers. Of the 762, we 
can ignore the k=1 case leading to 744 relevant ROE numbers to be compared.

(8) The total of 126 groups: 
Even if we have 9 criteria we have determined that it is impractical to use a criterion for the 
choice of stocks based on a fusion of more than five stock-picking criteria at a time in our 
context. This means we are not allowing a grand fusion of all nine criteria (ABCDEFGHK). We 
are also disallowing fusions containing 6, 7, or 8 criteria at a time.  However we must consider 
a complete listing of choices for all possible sets of 5 out of 9 leading to (9 choose 5) or 126 
distinct choices to be considered separately. We refer to these as groups for the purpose of 
discussion. Since the portfolio of best stocks recommended for one group will not, in general, 
coincide with the best portfolio for another group, we need to study all of them.

(9) Final ranking of all stock choices for all 126 groups
Compared to the traditional method of choosing one criterion at a time, the fusion method is 
much ahead of the game, since we have noticed that a great many cases exist where combined 
criteria using averages of scaled scores have strictly higher ROE performance than the ROE of 
their individual components taken one at a time.  Now we will consider 2*(25 – 1 – 5) = 52 
ROE numbers for each of the 126 groups. However, we fully expect to have many duplicate 
fusions among these groups. It turns out that we need not be concerned with explicitly separating 
the duplicates, because we can simply rank order with respect to 52*126=6552 ROE numbers 
from the lowest ROE to the largest ROE, and eventually pick the best rows based on the highest 
ROE.  If there are duplicates they will simply become identical rows, easily omitted by a 
computer algorithm.  Identical rows do not affect the value of ROE or the ranking.

4. The Results

For our example, the best fusion is the rank combination of criteria A, B, E, and F.  
Having found this fact, our next task is to identify the stock id numbers (ticker symbols) for the
top 50 stocks recommended by this ABEF combination.  Although the calculation was already 
done, it is not efficient to keep such results in computer memory. Instead, we suggest going back 
to the ranks for A, B, E and F after the choice is decided.  It is a simple matter to find the 
associated stock symbols after sorting the ranks. This will finally yield the best portfolio of 50 
stocks suggested by our method.  Ticker symbols of 50 stocks in the ideal portfolio which is the 
result of rank combination of MCS’ A,B,E and F with highest normalized ROE = 0.77762:

BOBE, WY, AAI, FTD, ORFR, SNHY, TCBI, MXM, TKCRF, SSYS, CPF,  GBTB, WTAI, 
CFR,  XLACF, BWINB, NPO, FCBQ, PNS, KV/A, AMKR, FNCB, NVSL, MGP, RGX, RTC, 
BHS, KPCG, FCNCA, BKF, MTZ,, MLAB, BKLYY, KMA, TDSC, NFX, TFN, WDC, ELRN, 
BLSC, ZOOM, TTMI, MSFT, BDOG, BSQR, CNBKA, PCES, COSN, TESS, INFA.
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Table 1 illustrates some intermediate calculations for the combination of the five MCS’ 
A,B,C,E and F, where we have the number 1 along the last two columns whenever we have 
strictly positive (superior) outcome from a fusion algorithm in terms of the ROE performance 
compared to the outcome achievable by individual criteria. In table 1 with 31 rows we have 36 
strictly positive outcomes out of the 62 possible rank- and score- combinations, [A]=Trailing PE, 
[B]=Forward EPS, [C]=Forward PE, [E]=Ratio of Enterprise value (EV) to Invested Capital, 
[F]=Value to B.V. of Capital. 

                                   Table1
                            Intermediate Calculations

 list rank-comb. score-comb. score superiority rank superiority

31
ABC

EF 0.77217 0.7308 1 1

27
ABC

F 0.731 0.72832 1 1

30
BCE

F 0.74041 0.71989 1 1

29
ACE

F 0.77273 0.7196 1 1
20 ACF 0.75248 0.71865 1 1
23 BCF 0.72213 0.71629 1 1
13 CE 0.73999 0.71593 1 1
15 EF 0.70281 0.71532 0 1
24 BEF 0.73222 0.71517 1 1

28
ABE

F 0.77762 0.71486 1 1
12 BF 0.7374 0.71364 1 1
25 CEF 0.74697 0.71296 1 1
21 AEF 0.74846 0.71226 1 1
5 F 0.71218 0.71218 0 0
3 C 0.7109 0.7109 0 0

18 ABF 0.7517 0.71039 1 0
14 CF 0.73806 0.71019 1 0
9 AF 0.77523 0.70949 1 0

19 ACE 0.75123 0.70734 1 0
8 AE 0.76542 0.70064 1 1
7 AC 0.70254 0.70037 0 0
1 A 0.69907 0.69907 0 0

26
ABC

E 0.72075 0.69226 1 0
17 ABE 0.75688 0.69208 1 0
16 ABC 0.69961 0.68889 1 0
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6 AB 0.69365 0.68749 0 0
22 BCE 0.71751 0.68692 1 0
4 E 0.68494 0.68494 0 0

10 BC 0.69981 0.68233 0 0
11 BE 0.73489 0.6781 1 0
2 B 0.67423 0.67423 0 0

       The first column of Table 2 reports the criterion elements in the fusion, such as ABEF. 
The second column reports the normalized ROE for the rank-combination identified by the 
letters in the first column.  The third column of Table 2 reports the normalized ROE for score-
combination identified by the letters in the first column. The table has 60 rows for the top ranked 
60 out of 6552 possibilities with respect to this ROE value.  A “1” or “0” in the parenthesis 
following the ROE values in second and third columns indicate whether the ROE value gives a 
strictly positive or 'greater than or equal to' result.  In Table 2 with 60 rows we have 80 strictly 
positive outcomes and 40 remaining outcomes. The bold numbers in Table 2 indicate the chosen 
combination (rank or score) along each row.  It is interesting that top 39 are all rank 
combinations. Only along row numbers 40, 45, 50 and 59 we have bold (superior) ROE 
achievement in the last column.

                               Table 2
    Fusion          Rank Combination Score Combination

1   ABEF 0.77762(1) 0.71486(1)

2   AF 0.77523(1) 0.70949(0)

3   ACEF 0.77273(1) 0.7196(1)

4   ABCEF 0.77217(1) 0.7308(1)

5   AE 0.76542(1) 0.70064(1)

6   ABE 0.75688(1) 0.69208(0)

7   ACEFH 0.75318(1) 0.67352(0)

8   ACEFG 0.75283(1) 0.69005(0)

9   ACF 0.75248(1) 0.71865(1)

10  BCEFK 0.75209(1) 0.72389(1)

11  ABF 0.7517(1) 0.71039(0)

12  ACE 0.75123(1) 0.70734(0)

13  ABEFK 0.75037(1) 0.71695(1)

14  AEF 0.74846(1) 0.71226(1)

15  ACEFK 0.74782(1) 0.69338(0)

16  ABEFH 0.74732(1) 0.69434(0)

17  CEF 0.74697(1) 0.71296(1)

18  ABEFG 0.74266(1) 0.69284(0)

19  ABEH 0.74158(1) 0.65763(0)
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20  AEFG 0.74108(1) 0.68565(0)

21  BCEF 0.74041(1) 0.71989(1)

22  AFG 0.74033(1) 0.6852(0)

23  CE 0.73999(1) 0.71593(1)

24  BCEFH 0.73851(1) 0.71256(1)

25  CF 0.73806(1) 0.71019(0)

26  AEFH 0.73773(1) 0.68948(0)

27  BF 0.7374(1) 0.71364(1)

28  CEFG 0.73651(1) 0.69044(0)

29  ABCFH 0.73635(1) 0.68809(0)

30  BE 0.73489(1) 0.6781(0)

31  ABEGH 0.73456(1) 0.70075(1)

32  ABFHK 0.73423(1) 0.68101(0)

33  CEFGK 0.73401(1) 0.7055(0)

34  AEFHK 0.73278(1) 0.68085(0)

35  BEF 0.73222(1) 0.71517(1)

36  ABFH 0.73216(1) 0.69015(0)

37  ABEHK 0.73214(1) 0.65405(0)

38  ABCEH 0.73128(1) 0.65459(0)

39  ABCF 0.731(1) 0.72832(1)

40  ABCEF 0.77217(1) 0.7308(1)
41  ABFGH 0.7307(1) 0.70617(0)

42  ACFHK 0.72966(1) 0.6648(0)

43  ACEGH 0.72948(1) 0.68705(0)

44  ACFK 0.72932(1) 0.6838(0)

45  ABCDF 0.69842(0) 0.7292(1)
46  CEFHK 0.72919(1) 0.67887(0)

47  AEG 0.72904(1) 0.67584(0)

48  AEFGK 0.72893(1) 0.71587(1)

49  ACFH 0.72872(1) 0.67509(0)

50  ABCF 0.731(1) 0.72832(1)
51  EFHK 0.72685(1) 0.68104(0)

52  ABFK 0.72668(1) 0.70738(0)

53  ACFGH 0.72647(1) 0.69966(0)

54  ACEK 0.72552(1) 0.67973(0)

55  CFH 0.72536(1) 0.68714(0)
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56  ADEF 0.72474(1) 0.7131(0)

57  ABEG 0.72438(1) 0.67483(0)

58  CEFK 0.72397(1) 0.69178(0)

59  BCEFK 0.75209(1) 0.72389(1)
60  BEFK 0.7232(1) 0.70541(0)

       Figure 1 illustrates a rank-score function for each of the five criteria in the combination 
ABCEF (Fig1 (a)) and ABEFH (Fig1 (b)).  It is a graph of scaled score (forced into the closed 
interval range 0 to 1) for a given rank.  In our case the ranks are from 1 to 584, with low ranks 
representing desirable portfolios for the particular fusion of A, B, C, E and F.  
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     The top ranked ABEF criteria are worth special attention.  We draw the rank-score graph
for the fusion of A, B, E and F criteria in Figure 2.  Vertical axis has average of scaled scores 
for the four criteria for a given rank. When the rank is 1 it means the best stock and rank 584 is 
the worst stock by this criterion.
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The diversity d(X,Y) represents the pair-wise diversity or distance between the rank-score 
functions of the two criteria x and y.  Performance ratio between the lower performance and the 
higher performance of x and y is indicated a Pl/Ph.  Figure 3 shows positive cases indicated by 
“o” symbol and negative cases indicated by ‘x’ symbols.  The total number of points is (9 * 8/1 
* 2) * 2 = 72.
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5. Conclusion and Comments on Possible Future Work

This paper considers several novel tools and proposes new ways of thinking about 
combining different and often competing criteria available in the portfolio selection literature. 
We show that the portfolio selection problem can be solved by this method and further 
extensions of the method are possible. Generally financial data sets are huge.  We have chosen 
a well known data set with over 7000 stocks. It is not surprising that tools developed by 
computer scientists can readily handle large data sets. In fact we are able to come up with a 
specific recommendation of a portfolio consisting of 50 stocks and list their ticker symbols on 
the New York Stock exchange.  Even though the data we use here in the example are old, the 
framework and algorithm proposed in this paper can be applied to a more current and general 
setting.

As we stated in Introduction (aspect (1)) and we can see from Tables 1 and 2, considering 
both rank and score combination has the distinctive advantage of choosing the better 
performance combination.  Distinctive aspect (2) stated in Introduction allows us to examine all 
the 2x(25-1-5)=52 combinatorial combinations of the C(9,5) = 126 groups when the size of the 
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MCS’ is relatively small.  This strategy is better when compared to the linear (or linearly 
weighted) combination approach.  This is evidenced by the fact that the best-case ABEF is the 
result of the combinatorial combination among A, B, C, E, and F in Table 1.  The rank-score 
graph of each of the MSS’ depicts the rank (or scoring) behavior of that criterion (or model) 
system.  Figure (1)(a)(b) and (2) give the rank-score graphs of A,B,C,E,F, of A,B,E,F,H, and of 
ABEF, respectively.

 The current work develops the initial framework for the selection of assets utilizing 
information fusion (CFA) to combine multiple criterion systems.  It has generated several issues 
for further work:

(a) We will compare rank combination versus score combination and explore the reason (or 
condition) why one is better than the other.  This finding will be compared with Remark 
(A)(2) which was studied by Hsu and Taksa (2005)  in the information retrieval context.

(b) Remark (B) lists three possibilities to define diversity between two criteria X and Y, 
d(X,Y). In this paper, we use d(X,Y)= d(fX,fY) (see Figures 1 and 2). In the future we may 
also incorporate d(sX,sY) and/or d(rX,rY) and a comparison among these three diversity 
measures. 

(c) Figure 3 plots positive cases and negative cases of combinations of X and Y on x-y plane 
where x-axis is the performance ratio Pl/Ph and y-axis is the diversity measure d(fX,fY) for 
72 cases.   The result is relatively similar to those found and stated in Remark (A)(a) in 
other application domains such as information retrieval in Hsu et al (2005, 2006), and Ng 
and Kantor (2000), virtual screening and drug discovery in Yang et al (2005) and more 
recently multiple classifier systems in Chung et al (2007).  We will produce much more 
points for combination of the criteria X and Y.

(d) We will apply the framework to a variety of other large data sets in the portfolio selection 
process.  We will also extend our multiple criterion systems to multiple model systems 
where each scoring system is a model such as neural network, support vector machine, or 
singular value decomposition.

By way of extension, it is also quite possible to use time series data for each stock and 
myriad other choices of performance and stock-picking criteria. For example, Vinod. et.al. 
(2005) and Vinod (2004) discusses four orders of stochastic dominance based on different 
empirical probability distributions suggested by the past data for each stock.  With the use of 
fusion algorithm we are not restricted to focus only one stochastic order of dominance at a time. 
Thus, the CFA approach can have a great potential and a bright future in the process and the arts 
and sciences of portfolio selections.
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