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Abstract

A new two-way map between time domain and numerical mag-
nitudes or values domain (v-dom) provides a new solution to het-
eroscedasticity. Since sorted logs of squared fitted residuals are mono-
tonic in the v-dom, we obtain a parsimonious fit there. Two theorems
prove consistency, asymptotic normality, efficiency and specification-
robustness, supplemented by a simulation. Since Dufour’s (1997) im-
possibility theorems show how confidence intervals from Wald-type
tests can have zero coverage, I suggest Godambe pivot functions (GPF)
with good finite sample coverage and distribution-free robustness.
I use the Frisch-Waugh theorem and the scalar GPF to construct
new confidence intervals for regression parameters and apply Vinod’s
(2004, 2006) maximum entropy bootstrap. I use Irving Fisher’s model
for interest rates and Keynesian consumption function for illustration.

1 Introduction

Since this paper is prepared for a conference in honor of my own teacher
Professor Dhrymes, I attempt to build upon his work. Dhrymes (1998, Ch.6)

∗Presented at an International Conference of Econometricians in honor of Prof. Phoe-
bus Dhrymes at Paphos, Cyprus, on June 3, 2007. I thank B. D. McCullough and the
conference participants including: Steven Durlauf, David Hendry, Soren Johansen, Peter
Phillips and Aris Spanos for helpful comments. E-Mail: Vinod@fordham.edu
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proposed a novel Wald-type conformity cointegration test (CCT) for testing
the null hypothesis of no cointegration using Π(L) matrices of coefficients
of lagged levels in a typical vector error correction model (ECM). Since the
CCT has not received wide following by econometricians, I have included
its discussion in the hope that it might. Inspired by CCT but going beyond
testing, this paper discusses efficient estimation of coefficients and confidence
intervals. We shall see that this paper does not deal at all with the ECM
as such, except in the context of CCT and is mainly about HAE estimation.
The paper offers following novelty items:

(i) Since inverting Wald-type tests to obtain confidence intervals is prob-
lematic due to Dufour’s (1997) impossibility theorems, replacing Fisher’s
pivot by a more robust Godambe’s pivot function (GPF) is desirable as ex-
plained in Vinod (1998, 2000). This paper exploits the Frisch-Waugh theorem
to construct new and much simpler confidence intervals for deep parameters.

(ii) Vinod (2004, 2006) provides a maximum entropy bootstrap for evolu-
tionary series while avoiding the differencing used in CCT. This paper recog-
nizes for the first time that the underlying sorting algorithm yields two-way
maps between the time domain and numerical magnitudes or values domain,
denoted by (t-dom ↔ v-dom).

(iii) Since efficient estimation correcting for autocorrelation involves off-
diagonal elements of the covariance matrix it is more practical to first correct
for it before turning to heteroscedasticity. Using the (t-dom ↔ v-dom) map
this paper suggests a new HAE method for solving heteroscedasticity while
avoiding incidental parameters problem. We prove theorems and include a
simulation and examples.

Now we describe the motivation behind these novelty items with the help
of an example. An economic equilibrium often relates one variable to a set of
variables on the right hand side (RHS). For example, Irving Fisher proposed
a version of the following equilibrium relation between tax adjusted nominal
interest rt and unobservable expected inflation Ept at time t as:

rt = RHSt + εt, where RHSt = β0 + β1Ept. (1)

If due to a rise in expected overall inflation the tax adjusted nominal in-
terest falls short, rt < RHSt, then moneylenders will demand higher interest
payments.

Dhrymes’ CCT is meant for testing the weak form of Fisher’s hypothesis,
which states that there is cointegration among the variables. This paper
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provides confidence intervals for testing the strong form that β1 = 1 in (1).
We use (1) to illustrate typical need to estimate equilibrium relations

among jointly evolving series, while overcoming a long list of interdependent
problems including: autocorrelated and or heteroscedastic errors, endogene-
ity, identification, spurious regression, and incidental parameters.

1.1 Motivation for the GPF of Novelty Item (i)

If the RHS variables are correlated with the errors, the ordinary least squares
(OLS) estimator is inconsistent needing instrumental variables, which are of-
ten obtained from additional equations. For example, one can replace Ept by
a stable stationary first order autoregressive, AR(1), process in the following
second equation:

pt = µ0 + µ1pt−1 + ξt, (2)

where ξt denotes error in expectations. Substituting (2) in (1) yields:

rt = β0 + β1[µ0 + µ1pt−1] + ut, where ut = β1ξt + εt, (3)

where the original error εt is revised to become ut after incorporating the
error in inflationary expectations. The endogeneity problem is removed to
the extent that lagged inflation is fully known and therefore exogenous at
time t. Unfortunately, this has created a new identification problem since
the original deep parameter β1 is replaced by the product (β1µ1).

Dufour (1997) proves ‘impossibility theorems’ and explains why confi-
dence sets for such ‘locally almost unidentifiable’ parameters can have zero
coverage probability, blaming the ‘fundamentally flawed’ intervals obtained
from inverting Wald-type tests. Moreover, the spurious regression problem,
generally solved by differencing, is also related to the Wald-type t test. A
pivotal quantities lemma (Spanos, 1999, p.726) shows that properly avoiding
Wald-type intervals would need a new pivot. Vinod (1998, 2000) uses the
GPF in conjunction with an older independent and identically distributed
(iid) bootstrap shuffle and double bootstrap. This paper suggests a radically
simplified scalar GPF for confidence intervals on all regression coefficients.

1.2 Error Correction Model (ECM) of Co-integration

A vector autoregression of order p, VAR(p) is:

yt = A1yt−1 + . . . + Apyt−p + ut, (4)
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with p vectors of lagged values and p matrices Ai of dimensions K ×K for
i = 1, . . . , p, and where ut ∼ WN(0, Σ), a K-dimensional white noise process
with Σ denoting a time invariant positive definite covariance matrix.

The ECM writes ∆yt as a function of lagged levels yt−1 and lagged ∆yt,
where lagged ∆yt can be viewed as past equilibrium errors:

∆yt = Π yt−1 + Γ1∆yt−1 + Γ2∆yt−2 + ... + Γp−1∆yt−p+1 + ut, (5)

where Π and Γj(j = 1, . . . , p− 1) are all K ×K matrices. Let IK denote the
identity matrix of dimension K. There are only p−1 matrices Γj used in (5)
to facilitate the following link with the coefficient matrices of VAR(p) of (4).

Π = −IK + A1 + A2 + . . . + Ap, Γi = −(Ai+1 + . . . + Ap). (6)

If all individual variables are I(1) or I(0), the VAR(p) is said to be cointe-
grated, if the rank of Π is deficient, that is, if Rank(Π) < K. If the equilibrium
relation is statistically significant, there will be at least one cointegrating re-
gression relation with I(0) errors, even if the K individual variables are all
I(1). One solves the spurious regression problem by testing for the presence
of cointegrating relations, instead of relying on biased t statistics from OLS.
The following remark argues that random walks are unrealistic for many
economic series and perhaps rather rare.

REMARK 1: (Economic equilibria, unpredictability and random walks).
Arbitrage ensures that aggregate market equilibrium errors εt should be un-
predictable, in the sense (Samuelson’s) that ‘properly anticipated prices fluc-
tuate randomly.’ Since yt = yt−1 + εt=

∑t
j=−∞ εj, ‘integrating’ unpredictable

εj values, upon assuming infinite memory and zero discounting, can build an
economic series as yt ∼ I(1), or a random walk. Humans can only have finite
memory and elementary economics teaches us that discounting is ubiquitous.
Although the market as a collection of individuals need not fully share in-
dividual frailties, infinite memory and zero discounting are too strong and
unrealistic assumptions. Even if unit root tests show many economic series
are I(1), Maddala and Kim’s (1998) survey mentions results that these tests
have low power and size distortion. Far from I(1), economic series depend
on initial (resource) endowments, are subject to irreversible changes (SEC,
FCC, Oil shock) and their content (names of 30 stocks in DJIA) and defini-
tions (GDP deflator) change over time. Equilibrium errors among such series
can still be unpredictable, without being subject to the ECM straight jacket.
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Dhrymes’ CCT, discussed in Section 2 below, assumes that the ECM
representation (5) is valid. Noriega and Ventosa-Santaulria (2006) show that
spurious regression arises even without I(1) variables, such as when the vari-
ables have mixed I(d) features with distinct values of d (including fractional
and zero) along with deterministic trends and structural breaks. For exam-
ple, Phillips (2005, p.153) uses fractional d estimates to conclude that “unit
root nonstationarity and short memory are both clearly rejected.” for the
Fisher equation data studied by him. Hence there is a need for an alterna-
tive to the CCT for these general situations. However, if any such extension
continues to use differencing or de-trending to achieve stationary data, it is
most likely to exacerbate the identification problem, quite similar to Section
1.1 above. After all, an economic equilibrium relation between yt and xt with
a deep parameter β1 (say) is much different from a relation between changes
∆yt and ∆xt. The identification problem is that the deep parameters of the
original specification might be difficult to recover.

1.3 Motivation for the t-dom v-dom Maps
of Novelty Item (ii)

Consider a toy example with xt = (4, 12, 36, 20, 8) values in the time domain
(t-dom). Consider a matrix having (1,2,...,5) in the first column and xt in
the second. Now the order statistics x(t) = (4, 8, 12, 20, 36) are said to belong
to the (ordered numerical) values domain (v-dom), are obtained by sorting
on the second column while carrying the first column along. The sorted first
column yields the reverse map v-dom → t-dom.

In the v-dom Vinod’s (2004, 2006) maximum entropy bootstrap fits a
‘mean preserving’ maximum entropy (ME) density and creates J (=999, say)
iid resamples. The reverse map (t-dom ← v-dom) is particularly useful for
developing a bootstrap which can re-capture the time subscript and thereby
avoid the assumption that xt ∼ I(1). The algorithm with examples and full
details is now freely available as the ‘meboot’ package in R(2006) maintained
by J. Lopez-de-Lacalle.

The ‘mean preserving’ property of the ME density in the values domain
becomes the ergodic theorem in the time domain. Using the meboot pack-
age, it is trivial to create J reincarnations (resamples) of evolving economic
time series. Vinod (2006) suggests using the resamples to estimate what
might happen to deep parameters and to construct approximate confidence
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intervals, while avoiding differencing and de-trending. Although fundamental
problems with OLS (e.g., autocorrelation, heteroscedasticity, overestimation
of Student’s t statistic from OLS applied to trending series) are not removed
by simply considering J coefficient estimates, certain confidence intervals do
become easier to construct.

1.4 Novelty in HAE Estimation, Item (iii)

Efficient estimation despite autocorrelated and /or heteroscedastic errors are
two old problem for which separate tools are already available. Newey (1993)
describes efficient estimation under heteroscedasticity of the unknown form
from the viewpoint of generalized method of moments (GMM) and instru-
mental variables, showing how to add moment conditions to improve the
asymptotic efficiency. The novelty here is that my moment condition in-
volves a whirlwind tour through the (t-dom ↔ v-dom) map.

Auxiliary variables needed for efficient estimation are traditionally con-
structed from the matrix of regressors X wedded to the time domain. For
example, Hall (1980) and Cragg (1983) use squares and cross-products of
columns of X, whereas Robinson (1987) uses a k-nearest-neighbors (kNN)
where nearness refers to nearness in time. When Cragg constructs δt = σ2

t−σ̄2

based on the deviation of residual variances from their average, he is implic-
itly recognizing that what matters for heteroscedasticity is their numerical
magnitude. After showing that magnitudes are best studied in the values do-
main, this paper suggests a new nonstochastic auxiliary variable constructed
from a simple sequence of numbers (1,2,...).

We have seen in Section 1.1 that columns of X often depend on errors,
making Cragg’s (See his footnote 2) reliance on squares and cross products
problematic. Similarly, Robinson’s iid assumption is problematic in the time
domain, but might have worked better in the values domain. Moreover, my
method for sequentially correcting for autocorrelation first and heteroscedas-
ticity next is new, to the best of my knowledge.

1.4.1 Avoiding the Novelty in the Choice of the Minimand

Since heteroscedasticity is a very old problem some authors have attempted
to solve it by modifying the least squares objective function itself. Our
proposal does not follow this route of changing the problem to find a solution.
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Professor C. R. Rao suggested variance components model where there are
fewer components than T and a quadratic form y′Ay to estimate them. He
minimizes the Euclidian norm of the difference between the true quadratic
form and its estimator and called it minimum norm quadratic estimation
(MINQUE). The large literature inspired by MINQUE is reviewed by Rao
(1977).

Nonparametric generalization of the regression model contains R-estimates
based on ranks of residuals minimizing the dispersion of residuals defined
by

∑T
t=1 w(t)R(ût)(ût), where w(t) represents suitably defined weights (of-

ten Wilcoxon scores) and R(.) represents ranks. For example, Dixon and
McKean (1996) analyze the heteroskedastic linear model using rank-based
statistics for both scale and regression coefficients. Even though our pro-
posal uses order statistics, we do not modify the basic minimand of least
squares estimation under heteroscedasticity.

It would be an interesting reseach project to compare all these strands
under various choices of the minimand in future work. The outline of the
remaining paper is as follows. Section 2 discusses an application of Dhrymes’
procedure to Irving Fisher’s hypothesis. Section 3 discusses a new sequen-
tial approach to heteroscedasticity cum heterogeneity and autocorrelation
efficient (HAE) estimation. Section 4 describes a Monte Carlo simulation.
Section 5 reviews estimating functions (EFs) at the root of Godambe pivot
functions (GPFs) with a subsection 5.1 describing how the Frisch-Waugh
theorem helps convert a vector pivot to scalar in regression problems. Sec-
tion 6 describes the scalar GPF bootstrap. Section 7 has a summary and our
final remarks.

2 Conformity Cointegration Test (CCT)

Assuming r0 cointegrating relations among K variables using T data points,
Dhrymes’ CCT tests whether the rank of a K × K matrix M̂ , illustrated
in (8) below as a covariance matrix among K variables sandwiched between
Π matrices, is less than the ‘maximal possible number’. Dhrymes suggests
estimating the eigenvalues λi of M̂ . If there is only one cointegrating vector,
(r0 = 1), Dhrymes’ null hypothesis of no cointegration for his ‘ trace’ statistic
is that the last (smallest) eigenvalue λK = 0. His test statistic is the sample
size T times the observed smallest eigenvalue. If the Wald type test statistic
is smaller than critical values tabulated by Dhrymes, we accept the null of
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no cointegration.
Now we test the weak form of Irving Fisher’s model of (1) by using the

data set called ‘Mpyr’ available in the R software package called ‘Ecdat.’ It
has annual time series of pt (logs of net national product price deflator) to
measure inflation and rt (log of commercial paper interest rate in annual-
ized percent rate units) from 1900 to 1989 (T = 90). We write the 2 × 2
variance-covariance matrix of pt and rt, vcov(p, r), from Var(p)= 0.6049009,
cov(p, r) = 1.353613, Var(r) = 8.407432. The Π(1) matrix is estimated from
the VAR estimation of (4) using the R package called ‘vars’. Next we write

Π(1) = A1 + A2 − I2, (7)

as the sum of three matrices upon using (6). Now the M̂ matrix in Dhrymes’
notation is obtained from the matrix multiplication:

M̂ = Π(1) vcov(p, r) [Π(1)]′. (8)

The eigenvalues of vcov(p, r) matrix are: λ1 = 8.6355903 and λ2 =
0.3767427, respectively. The eigenvalues of M̂ are λ1 = 0.1491416, and
λ2 = 0.00001179838. For testing one cointegrating relation, (r0 = 1 in
Dhrymes’ notation), Dhrymes’ test statistic is Tλ2 = 0.001061854, which
is smaller than his tabulated critical value 8.125 at 95% for K = 2 (K is q in
Dhrymes’ notation). Hence the null of zero eigenvalue implying the presence
of a cointegrating relation is not rejected, supporting the weak form of Fisher
hypothesis, that moneylenders are sensitive to general inflation and are not
fooled by nominal returns. Phillips (2005) and many authors in that journal
issue have recently revisited the Fisher model without mentioning CCT.

3 Heteroscedasticity and Autocorrelation

Efficient (HAE) Estimation.

The usual linear regression model with a general covariance matrix is:

y = Xβ + ε, Eε = 0, Eεε′ = σ2Ω, (9)

where X is T × p, β is p × 1, y and ε are T × 1. In practice, the large
T × T Ω matrix is rarely, if ever, known. The quasi score function (QSF)
represents p “normal equations.” Write the QSF at time t assuming Ω =
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IT as: St = X ′
t(yt − Xtβ). The OLS estimator b = (X ′X)−1X ′y, has the

covariance matrix Cov(b) = σ2(X ′X)−1, where σ2 is commonly estimated by
s2 = (y − Xb)′(y − Xb)/(T − p). The observable score Ŝt at t is obtained
by replacing β by b. This type of estimators using observable scores are,
of course, conditional on specification of the original model. Ignoring the
Ω matrix makes OLS estimates of β inefficient and standard errors SE(b)
potentially misleading. However, Remark 2 explains why one writes (Greene,
2000, p.470) Ω(φ) as a function of few parameters in the vector φ. Our
consistent estimates φ̂ will allow full asymptotic efficiency. For brevity, we
often write Ω(φ̂) = Ω̂(φ) as simply Ω̂.

REMARK 2: (parsimony rule of thumb): The incidental parameters (in-
consistency) problem arises whenever the number of unknown parameters to
be estimated increases with T. With only T data points, a rule of thumb
suggests that we should not have to estimate more than T/5 parameters.
Since the regression model has p coefficients to be estimated, the number of
elements in the φ vector of Ω(φ) should be less than (T/5)− p. That is, it is
desirable that: dim(φ) < (T/5)− p.

Assuming a consistent estimate Ω̂ defined above is available, the feasible
generalized least squares (FGLS) estimator of β is given by solving

∑T
t=1 St =

0 for β as:

bFGLS = [X ′Ω̂−1X]−1X ′Ω̂−1y, with Cov(bFGLS) = s2[X ′Ω̂−1X]−1. (10)

The considerable literature dealing with heteroscedasticity and autocor-
relation consistent (HAC) estimation helps practitioners who want to use the
OLS estimator b but want a better estimate of standard errors from diagonal
square roots of a sandwich estimator:

CovHAC(b) = (X ′X)−1[X ′Ω̂X](X ′X)−1, (11)

where the large Ω̂ matrix enters the expression only through a p× p matrix:
[X ′Ω̂−1X]. Zeileis (2007) offers a brief discussion of important references
including details on how to construct autocorrelation consistent Ω̂ from

Ω̂ = (1/T )
T∑
i,j

w|i−j| Ŝ Ŝ ′, (12)

where Ŝ is a T × 1 vector of observed scores Ŝt = X ′
t(yt −Xtb). The lag is

represented by |i− j| and weights w|i−j| decrease as the lag increases. Zeileis
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discusses many weight functions in the literature, including Bartlett, Parzen,
Tukey-Hanning, Quadratic-Spectral, with good examples.

Denote the square root matrix of the inverse of either Ω or its estimated
Ω̂ version (depending on the context) as V = Ω−1/2 or Ω̂−1/2. Sometimes we
write Vr instead of V with r = (a, h), where the subscript ‘a’ means Ω̂ involves
autocorrelation-correction alone and subscript ‘h’ means heteroscedasticity-
correction alone is made. Now premultiply (9) by V and write it as:

V y = V Xβ + V ε, EV ε = 0, E[V εε′V ′] = σ2IT . (13)

Let us denote by: yr = V y and Xr = V X, the revised versions of y and
X, respectively. The revised estimator of β is obtained by OLS on the revised
model which is equivalent to FGLS of (10).

We suggest making the autocorrelation correction before any heteroscedas-
ticity correction, since certain analytical tools are available for estimation of
Va, which cannot then be combined with estimates of Vh.

If the errors in (9) are AR(1), the order of dynamics of an underlying
stochastic difference equation is also 1, and the covariance matrix σ2Ω is
analytically known. For further generalization, it is convenient to insert a
subscript i to represent the order of dynamics and write the covariance matrix
as:

WL =


1 λi λ2

i . . . λT−1
i

λi 1 λi . . . λT−2
i

...
...

... . . .
...

λT−1
i λT−2

i λT−3
i . . . 1


Ωi = diWL, where di = (1− λ2

i )
−1 (14)

Note that this is constructed with only one parameter ρ = λi, which
is the regression coefficient of the autoregression and also the root of the
characteristic polynomial of AR(1) model given by (1− λiL). We can devise
a similar matrix for higher order dynamics, and write Ω =

∑q
i=1 Ωi following

Vinod (1985). He gives an explicit expression for q = 2, and explains how to
write the Ω for ARMA(q, q−1) regression errors when q > 2. Since inversion
of large matrices may involve numerical inaccuracies, Vinod (1985) suggests
analytical approximations for Ω−1 matrices needed to develop Va matrices
here.

In the AR(1) case we need not use (14) at all, since Va becomes a simple
bi-diagonal matrix (Davidson and MacKinnon, 2004, p.286). This Va has
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ones along the main diagonal, except for (1 − ρ2)1/2 in the top left corner,
and all sub-diagonal elements are equal to−ρ. For q > 2, the Va matrix has to
be computed by numerical methods. We suggest eigenvalue decomposition of
the symmetric positive definite matrix from ARMA(q, q−1) model for errors
as: Ω̂ = GΛG′, with G as the matrix of eigenvectors and Λ as the diagonal
matrix of eigenvalues. Next compute Va = GΛ−1/2G′, which is known to be
a numerically reliable inversion and square root operation. Next, we obtain
FGLS estimates by OLS on the revised model of (13), and corresponding
residuals (ûa). The autocorrelation correction using Va matrix should not be
made, if formal testing rejects autocorrelated errors. We do not mean to
suggest the FGLS is always preferred to OLS. Vinod (1976) discusses the
case where it might not be, since FGLS are based on stronger assumptions.

3.1 Efficient estimator of β using a new Vh to correct
for heteroscedasticity

In this subsection, we denote (ûa) as û. Let H = X(X ′X)−1X ′, be the usual
hat matrix and let the diagonals be denoted by the subscript ‘tt’. It is
well known that var(ût) = Eû2

t = Ωtt(1 − Htt). Efficient estimation under
heteroscedasticity tries to give a larger weight to observations with a lower
var(ût) than higher variance. Accordingly, the following estimates of Ωtt are
found in the literature:

(HC0): stt,0 = û2
t = [yt − E(yt|X)]2,

(HC1): stt,1 = T û2
t /(T − p),

(HC2): stt,2 = û2
t /(1−Htt),

(HC3): stt,3 = û2
t /(1−Htt)

2 and

(HC4): stt,4 = û2
t /(1−Htt)

δtt, where δtt = min(4, Htt/mean(Htt)).

Omitting the comma and second subscript yields the generic estimate stt.
Note that HC0 is a proxy for the conditional scale of yt, which is a non-
normal non-negative random variable. Davidson and MacKinnon (2004,
p.200) define HC1 to HC3 and suggest a slight preference for HC3 based
on the jackknife. Cribari-Neto (2004) suggests HC4.

Although HC0 to HC4 are used in consistent estimation of SE(b), these
cannot be used for ‘efficient’ estimation of β (our HAE) unless we solve
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the ‘incidental parameters’ problem (See Remark 2 above). Also, we should
use formal tests to make sure we have heteroscedasticity before proceeding
to correct for it. Cook and Weisberg’s (1983) score test is attractive here
because: (i) It allows for dependence of the variance on an arbitrary set of
variables, rendering many heteroscedasticity tests as special cases; (ii) It can
directly test the null hypothesis in the form of a model proposed in this paper
(given later in eq. 18) and is readily implemented as ‘ncv.test’ in the ‘car’
package of R.

If max (û2) is a lot larger (>>) than min (û2), it stands out better in
the v-domain. In general, non-constant diagonal values of Ω become readily
noticeable upon reordering them. Our solution to the incidental parame-
ters problem achieves parsimony by a regression of log(stt) on the sequence
(1, 2, . . .) in the the v-domain.

Before we proceed, note that we cannot rule out a locally perfect fit with
ût = 0. Assume that T ′ of the û2

t values are zero. This creates a practical
problem that their log(stt) becomes −∞. McCullough and Vinod (2003)
show that it is wrong to replace the T ′ zeros with suitably small numbers
close to zero. Hence, let us work with the remaining ‘good’ observations,
Tg = T − T ′, while temporarily excluding the troublesome T ′ components
from the following heteroscedasticity correction algorithm.

3.1.1 Map t-domain to v-domain for heteroscedasticity correction

We construct a T × 2 matrix W, having the first column containing the set
τ ′ = 1, 2, ..., T , and the second column containing stt. Next, we sort the W
matrix on the second column, ordering its elements from the smallest to
the largest, while carrying the first column along during the sorting process.
This finds the monotonic order statistics s(tt) belonging to the v-domain in
the second column, where the first T ′ elements will be already made zero in
the sorting process. Now, the remaining Tg (good) elements will be nonzero,
with well-defined logarithms. Use a subscript ‘s’ to denote the sorted version
of the W matrix: Ws = Ws,i,j, where its elements for row i and column
j bear the subscript (s,i,j). Denote its columns 1 and 2 as τ ′s = Ws,.,1 and
s(tt) = Ws,.,2, respectively, replacing the ‘i’ by a dot, using Professor Dhrymes’
notational convention.

Clearly, efficient estimation problem cannot be solved without some as-
sumptions about the process generating Ωtt.
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ASSUMPTION A1 (smoothness of heteroscedasticity): Denote the order
statistics of true Ωtt by Ω(tt) after mapping them into the v-domain. We as-
sume that all Ωtt lie on a piecewise smooth function f(Ω(tt)) in the (numerical
values) v-domain.

The intuition behind the assumption is simply that conditional scaling
of E(yt|X) is fundamentally related to the numerical values (magnitudes
of y and X) in the v-domain, rather than their timing. In practice, the
assumed smooth function f(Ω(tt)) in the v-domain is unknown and kernel
smoothing which allows smooth free-shaped curves is a possibility. Instead,
we use polynomial smoothing by exploiting the monotonicity of s(tt) in the v-
domain. Since variances must be positive, we use an exponential link function
between observable s(tt) and the unknown f(Ω(tt)). That is, we first note that
log is a monotonic transformation and seek a smooth intermediate function
g(log s(tt), z), where z denotes a suitable set of exogenous variables. Applying
the exponential link, exp(g) > 0, yields the smooth function f(Ω(tt)) as a
function of z in the v-domain.

Any set of monotonic variables can be our exogenous z. For simplicity
we define τ = T ′ + 1, T ′ + 2, . . . , T ′ + Tg, and propose the non-decreasing set
τ k(k = 0, 1, .., h). Now estimate g by a polynomial regression of log s(tt) on
(h+1) column vectors τ k, of dimension Tg × 1:

g(log s(tt), τ) =
h∑

k=0

φkτ
k + εs. (15)

We choose the h with some trial and error, perhaps starting with a quintic
(h = 5) and using the R2 of (15) adjusted for degrees of freedom as a guide.
We also recommend graphs to assess the shapes. The final choice of h should
try to satisfy the rule of thumb of Remark 2 above, now modified to be
(T/5) − p − h − 1 > 0. Let (15) represent a model after the suitable h is
found.

Let Xτ denote the matrix of regressors in (15). The normal equations
to obtain the OLS estimates of φ must be solved simultaneously and repre-
sent the following ‘moment condition’ (in the GMM literature terminology)
imposed in the values domain. It is expected to yield improved efficiency,
Newey (1993).

E

[
Xτ ′(g(log s(tt) − τ)−

h∑
j=0

φjτ
j)

]
= 0. (16)
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ASSUMPTION A2: The polynomial regression in (15) satisfies the usual
assumptions: validity of (15), E(εs) = 0, the matrix of regressors is full rank
and satisfies the Grenander conditions (Greene, 2000, p. 354) for conver-
gence, regressors are uncorrelated with errors (exogenous), and Eεsε

′
s = σ2

sI.
Since all variables in (15) are monotonic, we expect a good fit, but need to

guard against collinearity. This is why the full rank part of Assumption A2 is
needed. Other parts of Assumption A2 ensure that the following well-known
Lemma holds, where the proof can be omitted since exogenous regressors
readily satisfy Grenander’s conditions:

LEMMA 1: Let φ̂ denote the (h + 1) × 1 vector of ordinary least squares
estimates of coefficients φ in (15). Let⇒ denote convergence as T →∞. We
have φ̂⇒ φ in the values domain.

Using the Lemma we estimate the smooth function f(Ω(tt)) as exp(ĝ),
where ĝ is:

ĝ(log s(tt), τ) =
h∑

k=0

φ̂kτ
k, (17)

By properties of OLS, ĝ obtained by a form of trend-fitting provides an
unbiased (consistent) estimator of g, ĝ = g + residuals. If some of these
residuals are larger than a tolerance constant, corresponding observations
are ‘outliers,’ for our smooth function. Next, we can apply a truncation
window such that we simply delete additional T ′′ observations as outliers.
The beauty of the v-domain is that we can omit T ′+T ′′ elements, truncating
the left hand side of (15) with impunity. We can simply use τ ′ = 1, 2, ..., T ,
instead of τ = T ′ + 1, T ′ + 2, ..., T ′ + Tg, on the right hand side of (17) to get
the right number of estimates in the time domain. Of course, it needs the
reverse map from values to time domain, described next.

3.1.2 The Reverse Map: t-dom ← v-dom.

The true unknown smooth function f(Ω(tt)) is approximated by exp(ĝ) in
the v-domain. We still need to map this into the time domain to get the
diagonals Ωtt of Ω representing heteroscedasticity. Substituting the T × 1
vector τ ′ on right side of (17) yields a T × 1 vector ĝ, as desired. Note that
the initial T ′ components of ĝ are most likely to be negative and large (but
not −∞). The T ′′ outliers are likely to be scattered in the sample. Still, we
can replace the second column of the Ws matrix by exp(ĝ), and sort on the
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first column till it has elements equaling τ ′, yielding a doubly sorted T × 2
matrix denoted as Wss, where the subscript ‘ss’ suggests double sorting. Let
the individual elements in the second column of Wss be denoted by Wss,t,2,

which are time domain Ω̂tt quantities. Finally, our proposed correction for
heteroscedasticity uses the transformation matrix:

Vh = diag(1/Wss,t,2)
1/2. (18)

LEMMA 2. The sorting map from the time domain to the values domain
and the reverse map from the values domain to the time domain are linear
(matrix) operations.

PROOF: Let the t-domain have xt = (4, 12, 36, 20, 8), whose map to the
v-domain converts first column τ ′ = 1 : 5 to τ ′s = (1, 5, 2, 4, 3). Start with I5

(identity matrix) and rearrange the diagonal ones to positions given by τ ′s to
create a Orev matrix, as exhibited at Vinod (2006, p.964). Verify that the
reverse map amounts to pre-multiplication by Orev. Using the inverse matrix
(Orev)−1 note that both maps in (t-dom ↔ v-dom) are linear operations.
Using induction generalizes this to any T.

3.1.3 Cook-Weisberg Heteroscedasticity Testing.

Now we turn to the Cook-Weisberg test using zij matrix of proxy data for
heteroscedasticity. The (j+1)-st column of zij contains j-th power of sorted
τ ′s for j = 0, 1, . . . , h. The true slope coefficients φj for j = 1, . . . , h of the
polynomial of order h are all zero, under the null of homoscedasticity. The
Cook-Weisberg model is:

Ωtt = exp(
h∑

j=0

φjzij), (19)

where zij is a T × (h + 1) known matrix of arbitrary known quantities,
which may or may not be related to one or more of the columns of X in
their framework. White (1980) considers a similar zij from ‘all second order
products and cross products of original regressors.’ However, Greene (2000,
p. 509) criticizes that White’s test is ‘nonconstructive,’ since upon rejecting
the null of homoscedasticity it fails to suggest a remedy. The algorithm
proposed in this paper avoids such criticism. Conditional on our choice of
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the zij matrix, the Cook-Weisberg method tests the null of homoscedasticity.
The validity of our choice of zij in (19) depends on our theorem proved in
the sequel.

3.1.4 Analogy with Spectral Analysis.

Our v-domain is somewhat analogous to the frequency domain of spectral
analysis. Priestley (1981, p.432) states that the variance of sample peri-
odogram does not to tend to zero as T → ∞, because it has “too many”
sample autocovariances. Our incidental parameters problem is almost the
same. Two Fourier integrals, Priestley (1981, p.201), allow two-way maps
between the time and frequency domains. Our double sorting is simpler than
Fourier integrals and allows similar two-way mappings between the time and
v-domains. The spectral kernel smoothers omit (down-weight) sample peri-
odogram values outside a ‘window’ to satisfy a technical assumption similar
to our A3 below. We also omit T ′′ additional ‘outliers’ failing to satisfy the
smoothness assumption. Similar to the following Theorem, Priestley (p.464)
proves consistency results in spectral analysis and notes the simplifying value
of linearity.

ASSUMPTION A3 (truncation of stt): As the sample size increases we
omit a certain number of stt values outside a truncation window and keep
only Tα with (0 < α < 1), so that (Tα/T )→ 0, as both T and Tα →∞.

Since we are keeping only Tα = T − T ′ − T ′′ observations, we can satisfy
Assumption A3 provided T ′ + T ′′ > 0.

THEOREM 1: Under Assumptions A1 to A3, the Wss,t,2 in (18) yields

consistent estimates of Ωtt in the time domain, implying that Ω(φ̂)⇒ Ω(φ).

PROOF: Although the variance of each stt is O(1/T ), the variance of the
vector stt is O(1). In the v-domain stt become s(tt), the order statistics. There
we omit T ′+T ′′ observations to satisfy Assumption A3, so that var(s(tt))⇒ 0
for the entire set. Now use Lemma 1, Assumption A1 and Slutsky’s theo-
rem to verify that ĝ(log s(tt), τ) ⇒ f(Ω(tt)), the smooth function linking the
diagonals of Ω in the v-domain. Upon substituting in (17) and again using
Slutsky’s theorem, exp(ĝ) ⇒ Ω(tt), still in the v-domain. Now Wss,t,2 is a
t-domain image of exp(ĝ) and Ωtt is a t-domain image of Ω(tt). Since the map
from v-domain to time domain is linear by Lemma 2, Wss,t,2 ⇒ Ωtt. QED.
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ASSUMPTION A4: The alternative to Ω(φ) of (9) is contiguous satisfy-
ing: Ω(tt) = [1 + 2BT−1/2ft(X, β, φ)]Ω(tt), where ft is an arbitrary unknown
function satisfying: T−1ΣT

t=1f
2
t → µ, (0 < µ < ∞), and B is an arbitrary

scalar. The FGLS uses preliminary OLS estimate b, satisfying T 1/2(b− β) =
Op(1), to compute the residuals and φ̂ satisfies T 1/2(φ̂−φ) = Op(1). Also sup-
pose that for some positive definite matrix Spd, we have T−1[X ′Ω−1X]⇒ Spd,
and errors ε in (9) are normally distributed.

ASSUMPTION A5: plimT→∞T−1[X ′Ω̂−1X] = plimT→∞T−1[X ′Ω−1X],
and plimT→∞T−1/2[X ′Ω̂−1ε] = plimT→∞T−1/2[X ′Ω−1ε].

THEOREM 2: Assuming A1 to A5 the FGLS of (10) is efficient and robust.
The asymptotic distribution of T−1/2 [bFGLS−β] is normal, N(0, S−1

pd ), under
either the original Ω(φ) or its contiguous alternative specifications.

PROOF: The efficiency of FGLS has been established in the literature,
Greene (2000, sec.11.4), provided A5 holds and provided Ω(φ̂)⇒ Ω(φ), which
is proved in Theorem 1. Assumption A4 and a proof of robustness under
contiguous specification alternatives are in Carroll and Ruppert (1982).

The familiar generalized autoregressive conditional heteroscedasticity (G-
ARCH) models fit an ARMA model in the t-domain, where the condi-
tioning is on the past values of observable st−1,t−1 (volatility). Any re-
lationship between conditional and v-domain heteroscedasticity is hinted
by a time series plot of sorted τ ′s against τ ′ and by the autocorrelation
function for τ ′s. Denote the Pearson correlation coefficient between lagged
τ ′[1 : T − 1] = 1, 2, . . . , T − 1 and τ ′s[2 : T ] by COR(Lτ ′, τ ′s). If the samples
follow independent normal distributions, (which they do not) COR follows
the Student’s t distribution (with T − 2 degrees of freedom). In our case,
the p-value for testing the null hypothesis of zero correlation is a heuristic.
If conditional heteroscedasticity is present, the COR will be ‘significantly’
nonzero by our heuristic. In general, monotonic patches among the τ ′s sug-
gest GARCH effects and a further study might reveal interesting insights.

This completes our discussion of estimation of the square root of the
inverse of Ω̂ matrix, denoted as V, to sequentially correct for both autocor-
relation and heteroscedasticity, in that order, and only as needed in a given
problem. Our new HAE algorithm is implemented via these V matrices using
the standard OLS software on (13). The choice of the dynamic order q for
autocorrelation and polynomial of order h for heteroscedasticity should try
to satisfy the parsimony rule of thumb: (T/5)− p− h− 3− 2q > 0.
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3.2 An Example of Heteroscedasticity Correction

Since the heteroscedasticity correction (18) is new, it is important to discuss
its operation with the help of an example. Instead of Irving Fisher’s model
with only one regressor, it is perhaps more useful to illustrate the HAE algo-
rithm with a model having two regressors. Let us use a Keynesian consump-
tion function designed for testing Friedman’s permanent income hypothesis.
We can be extremely brief here, since the model and data are discussed in
Murray’s (2006) textbook and also in a vignette available on the Internet as
a part of my ‘meboot’ package. Let C =log (personal consumption), Y =log
(disposable income). The consumption function model is:

Ct = β1 + β2Ct−1 + β3Yt−1 + εt. (20)

Under rational expectations, the regressor Ct−1 has all relevant informa-
tion regarding current consumption. Hence, if Friedman’s permanent income
hypothesis is supported, the coefficient of lagged income should be insignif-
icant. This is indeed the case based on OLS estimation of (20) available
in Murray (2006, p.800) and omitted here for brevity. The standard er-
ror and the t-statistic for β̂3 are respectively: (0.14389, 0.187). If we use
the heteroscedasticy corrected (HC) standard errors (using R software pack-
age ‘sandwich’) these become (0.1613667, 0.1670287), respectively, without
changing the conclusion.

Upon fitting (20) to data, none of the OLS residuals is zero (T ′ = 0
here). The residual autocorrelations for lags 0 to 6 are respectively: 1, 0.146,
-0.035, -0.088, -0.088, -0.058, and -0.104. Their plot remains inside the confi-
dence band. Also, the Breusch-Godfrey test statistic 1.0816 with 1 degree of
freedom has the p-value of 0.2983, supporting the null of no autocorrelation
at the 5% level. For alternatives of orders 2 to 4 the respective p-values
are: (0.5366, 0.6711, 0.7704). This means we do not need to make any cor-
rection for autocorrelation with a Va matrix here. Even if we did, we can
effectively work with: y = Xβ + u as the model, before turning to the new
heteroscedasticity correction.

Table 1 lists key results for 20 choices of HCj for j=0,...4 and τh for
h = 1, . . . 4. The first two columns identify the HCj and τh. Although the
v-domain is clearly unsuitable for studying GARCH effects, Column 3 of
Table 1 contains heuristic p-values for a t test on the simple correlation coef-
ficient COR(Lτ ′, τ ′s), where small p-values suggest rejection of independence
and support presence of GARCH effects. Column 4 has p-values for Cook-
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Weisberg score test for the presence of heteroscedasticity, based on our new
choice for their artificial matrix of zij. The (j + 1)-st column of zij contains
j-th power of sorted (τ ′s) for j = 0, 1, . . . , h. If there is no heteroscedasticity,
all the coefficients φ in (19) will be insignificant. Since the p-values in column
4 are near zero, homoscedasticity is rejected for all 20 choices.

Column 5 of Table 1 has the adjusted R2 for the regression of logs of
sorted (û)2 on powers of τ in (17). Column 7 has the t-statistic on β3 in
(20) given in column 6 associated with Yt−1 after the pre-multiplication by
Vh based on the particular choice of HCj and polynomial power h. We choose
two rows marked with a (*) for further analysis: HC0 with linear polynomial
with the lowest t- statistic on β3 and HC3 with quartic (h = 4). The starred
choices have adjusted R2 =0.8988 and 0.9902, respectively.

Figure 1 reports graphs for the linear HC0 case. Upper panel plots the
order statistics of logs of squared residuals stt,0 as the solid line along with
a dashed line for the fitted values from a simple straight line in time, rep-
resenting our smooth intermediate function g(log s(tt), z). After computing
exp(g) and using the reverse map, we get the second column of doubly sorted
Wss matrix. The lower panel plots them in time domain as the dashed line
along with the solid line representing original squared residuals over time. It
is clear from both panels that with only 2 parameters of φ (intercept and co-
efficients of τ) we are able to get good estimates of heteroscedastic variances,
thanks to the double sort.

Figure 2 is similar to Figure 1, except that we have the quartic case with
HC3 here, showing that the quartic fit is better. After all, HC3 with the
quartic has a high (=0.9902) adjusted R2 in Table 1. The figures show that
rearranging observations in an increasing order of squared residuals can reveal
hidden heteroscedasticity with just a few additional parameters in φ. The
original OLS, as well as all 20 cases of efficient estimation show significant
β3 implying rejection of Friedman’s permanent income hypothesis.

Table 2 reports details for the row HC3* of Table 1. It has feasible
GLS estimates after heteroscedasticity correction by a quartic under HC3
transformation of squared residuals. The F(2,47) statistic for the overall fit
is 5.098e+06, with a near zero p-value. The OLS coefficient of Yt−1, which
was statistically insignificant before heteroscedasticity correction, has now
become significantly different from zero at the 5% level. Table 2 confidence
intervals do not support Friedman’s hypothesis.

It is interesting that if we use per capita consumption and disposable
income without the log transformation, then the Friedman hypothesis has
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support. The version in levels needs a first order autocorrelation correction
with Va and summary results are in Table 3. All models in Table 3 yield
insignificant ‘t-stat’ values in column 7 for the estimates of β3.

REMARK 3: (HAE estimation): We have shown how to correct for auto-
correlation and heteroscedasticity (in that order) by incorporating them in Vr

matrices with r = (a, h), and how the original model becomes: Eyr = Xrβ.
It is shown in (13) that after incorporating Vr, we can set Ω = I for all
practical purposes, without loss of generality.

4 A Monte Carlo Simulation of Efficiency of

HAE

Since assumptions A1 to A5 are not always easy to verify, we supplement
our theorems with a simulation experiment. Long and Ervin (2000), God-
frey (2006), Davidson and MacKinnon and others have simulated the size
and power of HAC estimators of SE(b). Cook and Weisberg’s (1983) sim-
ulation used cloud seeding data having T = 24 observations. Let us inject
objectivity into our Monte Carlo design by combining the Monte Carlo de-
signs used by Long-Ervin with that of Cook-Weisberg. Of course, our focus
is on efficient estimation of coefficients themselves, not inference. We pick
x1 to x4 data from a cloud seeding experiment (suitability criterion ‘sne,’
‘cloudcover,’ ‘prewetness’ and rainfall). These were among those chosen by
Cook-Weisberg to allow wide variety of heteroscedasticity possibilities.

Our dependent variable is constructed artificially (as in both designs) by
the relation:

y = b′01 + b′1x1 + b′2x2 + b′3x3 + b′4x4 + e, (21)

where b′` = 1, for all ` = 0, 1, . . . , 4 , as in Long and Ervin (except that
their b′4 is zero) and where ‘e’ represents a vector of T random numbers cho-
sen according to one of the following methods, which are called scedasticity
functions by Long and Ervin. They have a far more extensive simulation and
their focus is on HAC estimators. As j = 1, . . . , J (=999) let εdf5,j denote a
new vector of Student’s t distributed (fat tails) independent pseudo-random
numbers with five degrees of freedom.

SC1): e = εdf5,j. (no heteroscedasticity)
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SC2): e = (x1)
1/2εdf5,j. (disallows x1 < 0)

SC3): e = (x3 + 1.6)1/2εdf5,j.

SC4): e = (x3)
1/2(x4 + 2.5)1/2εdf5,j.

SC5): e = (x1)
1/2(x2 + 2.5)1/2(x3)

1/2εdf5,j.

Our next task is to use HAE estimators from (18) of the slopes b′1 to
b′4 in (21) in Monte Carlo simulation experiments with small T < 100. If
asymptotic results of our theory hold for such T , the efficiency of GLS should
be greater than that of OLS.

My simulation program creates a 4 dimensional array with dimensions (4,
6, 999, 5). The first dimension is for the estimates of p = 4 slope coefficients.
The second dimension with 6 values is for the OLS, and five HAE estimators
denoted by HC0 to HC4 and described earlier in our discussion before eq.
(15). Of course, the ‘C’ in HC refers to ‘correction’ by our eq. (18) not to the
usual ‘consistency’ in the sense used by Long and Ervin. The last dimension
is for SC1 to SC5 in increasing order of heteroscedasticity severity.

After computing the standard deviations of 999 coefficient estimates we
construct a summary array of dimension (4, 6, 5). It is convenient to suppress
the first dimension and average the standard deviations over the 4 coefficients.
Next, we divide the standard deviations for HC0 to HC4 by the standard
deviation for OLS, reducing it from 6 to 5. The final results are reported in
Figure 5, where we look for numbers staying below the OLS vertical value
of 1. The numbers 1 to 5 on the horizontal axis refer to HC0 to HC4. In
this experiment, the sophisticated HC3 and HC4 corrections do not seem to
offer great advantages in terms of efficiency. Since several values are below
1, many of our procedures are indeed more efficient than OLS.

Not surprisingly, the efficiency improvement is generally higher when het-
eroscedasticity ought to be intuitively more severe (by looking at the compli-
cations of the formulas for SC1 to SC5 given above), although the intuition
can fail in specific examples. In Figure 5 the efficiency gain is the highest
for graph for the most severe SC5 (line marked ‘5’) and lowest for the (SC1
marked as ‘1’) representing homoscedasticity, as might be expected. One
can easily guard against SC1 by formal heteroscedasticity testing. Figure 6
is similar to Figure 5, except that here we use b′4 = 0 in (21) as in Long and
Ervin. The efficiency gains over OLS continue to be achieved using correction
formulas of HC0 to HC4 where all lines are below unity.
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In another experiment, I use (21) without the x4 variable and economic
data with non-missing T = 46 observations from the ‘USfygt’ data set of my
‘meboot’ package. The x1 to x4 are: ‘fygt1, infl, reallir, and usdef’. Details
are omitted to save space. Again, efficiency gains are clear except for SC1.
Our experiments support the econometric practice of formally testing for
heteroscedasticity before considering any corrections.

It is surprising that Long and Ervin’s (2000) large simulation finds that
for typical sample sizes in economics (T < 100) the commonly used HC0,
HC1 and HC2 methods provide inferior inference (in size and power) than
the simplest s2(X ′X)−1 of OLS. In other words, OLS is hard to beat with
T < 100. Yet I have chosen T = 24, 46 to raise the bar. My HAE method is
worthy of study, since it is able to reduce the variance of OLS (over J = 999
experimental values) when heteroscedasticity is present in the model. Cook
and Weisberg emphasize a need to supplement simulations with graphics.
Figures 1 to 3 illustrate some interesting patterns of heteroscedasticity in
econometric applications.

5 Godambe Pivot Functions (GPFs)

Having completed a discussion of HAE estimation, we turn to replacing Wald-
type pivots by more robust Godambe pivots in our construction of confidence
intervals. Estimating functions (EFs) by Godambe (1960) and Durbin (1960)
are similar to moment conditions in the GMM literature. Wedderburn (1974)
developed quasi maximum likelihood (QML) estimators. The EF theory re-
lies on Wedderburn’s lead for robustness and seeks to find optimal EFs satis-
fying several desirable properties. Most remarkably, when the EF estimators
differ from the QML (for certain limited dependent variable problems recog-
nized by Wedderburn) Vinod (2002) proves the superiority of EF estimators
over rather time-honored principles of least squares (Gauss) and maximum
likelihood (Fisher). Heyde (1997) explains that unbiasedness, efficiency, suf-
ficiency, reaching the Cramer-Rao bound are all properties of the function
itself, quite apart from similar properties of the roots (QML estimators).
Heyde also discusses small sample advantages of the EF viewpoint.

Assuming that σ2 and Ω are known, ‘normal equations’ for (9) are p
equations in p unknowns in the β vector. They yield the QSF, mentioned
earlier in Section 3, as the following function of data and parameters when
Ω 6= IT :
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S(y, X, β) = X ′Ω−1(y −Xβ) = X ′Ω−1ε. (22)

Vinod (1997) notes that this quasi score is an optimal EF. Vinod (1998)
explains that GPFs achieve greater robustness by not satisfying the so-called
information matrix equality: IF = I2op = Iopg, involving matrices for Fisher
information, outer product of gradients (opg) and second-order-partials (2op)
of the log-likelihood. Note that the equality holds only for a non-robust
distribution having zero skewness and zero excess kurtosis.

Denoting the optimal estimating function by g*, Godambe (1985) pro-
posed:

GPF =
T∑

t=1

g∗t

[
T∑

t=1

E(g∗t )
2

]−1/2

. (23)

Vinod (1998, 2000) extends the GPF to the vector case and applies it to
the regression problem (9). He writes it as a sum of T scaled scores S̃t, with
scale factor Sc as:

GPF =
T∑

t=1

St/Sc =
T∑

t=1

S̃t, where Sc = [
T∑

t=1

E(St)
2]1/2. (24)

Vinod’s scaled score function of GPF is a p× 1 vector:

zG = [X ′Ω−1X]−1/2X ′Ω−1[(y −Xβ)/σ] =
T∑

t=1

S̃t, (25)

where the scale factor Sc = [X ′Ω−1X]−1/2 does not depend on the unknown
parameters β. Write the asymptotic covariance matrix of the GLS estimator
as:

cov(bGLS) = (ASE)2 = (IF )−1, (26)

where IF is Fisher information matrix [X ′Ω−1X]/s2, where s2 is the residual
mean square, and where ASE denotes an asymptotic standard error matrix.
Hence the vector version of Fisher’s pivot function (FPF) used in Wald-type
tests (we are trying to avoid) is

FPF = (bGLS − β)(ASE)−1, (27)

where bGLS are viewed as roots of S(y, X, β) = 0. The GPF expression (23)
avoids the roots and their sampling distribution. Since we admit zG 6= 0, the
division by σ needs to be recognized explicitly, as we do in (25).
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Upon writing the GPF as a sum of T scaled scores in (25), which might be
dependent in finite samples, Vinod (1998) lists the assumptions for McLeish’s
(1974) central limit theorem for dependent data. His Proposition 1 proves
that zG ⇒ N(0, I), and that GPF are more robust than the FPF of (27),
making them attractive in finite samples. For quick verification substitute
the matrix Sc = [X ′Ω−1X]−1/2 into (25) to yield: zG = ScX

′Ω−1[ε/σ], so that
its expectation, EzG = 0, holds. Now its variance covariance matrix is:

EzG(zG)′ = ScX
′Ω−1E[ε/σ][ε/σ]′Ω−1[XS ′

c]

= ScX
′Ω−1[σ2Ω/σ2]Ω−1[XS ′

c]

= ScX
′Ω−1XS ′

c = Ip. (28)

REMARK 4: Since the GPF has several desirable robustness properties
useful in finite samples, it is a good candidate for statistical inference when-
ever one wants to avoid Wald-type statistics. The roots of S(y, X, β) = 0
are quasi maximum likelihood QML (or GLS) estimators of β. In (25) the
scale factor [(X ′Ω−1X)−1/2/σ] > 0 cancels whenever the right side is zero.
Therefore, the QML roots coincide with the p roots of the p pivot equa-
tions: zG = 0. Next, we construct a 95% confidence interval by solving two
equations zG = ±1.96, using the familiar quantiles of N(0,1) variate.

If one is interested in multivariate joint confidence regions, Vinod (2000)
suggests the p-dimensional ellipsoid defined over the p dimensional parameter
space of β:

z′GzG ≤ χ2(0.95, p), (29)

where the right hand side has the upper quantile of a Chi-square variate with
cumulative probability 0.95, and with p degrees of freedom available in usual
tables.

A similar confidence region described in econometrics texts, Davidson and
MacKinnon (2004, p. 193), uses the FPF of (27) above. Since practitioners
cannot readily use ellipsoids, approximate confidence intervals need to be
obtained by a grid search for the largest and smallest values of each compo-
nent of β simultaneously satisfying (29). A good way to avoid grid search, in
situations where it can be avoided (not always) is to use the Frisch-Waugh
theorem as spelled out in the next subsection. Of course, there will be situa-
tions when one needs to explicitly take account of joint tests on two or more
parameters in β and work with confidence regions.
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5.1 Frisch-Waugh Theorem and scalar pivot for
multiple regression problems.

Remark 3 at the end of Section 3 notes that after suitably pre-multiplying
by the Vr matrix, we can simply set Ω = I for all practical purposes and
again work with: y = Xβ + u, and Euu′ = IT . The Frisch-Waugh theorem,
discussed in detail in Davidson and MacKinnon (2004) allows us rewrite the
model after partition of X = [X1, X2] as:

y = X1β1 + X2β2 + u, (30)

where our X1 has only one column and X2 has p× 1 columns. Our interest
is temporarily focused on the coefficient β1 of the first regressor. Define

M2 = (IT −X2(X
′
2X2)

−1X ′
2), (31)

as a T ×T projection matrix operator for getting the residuals from a regres-
sion. The Frisch-Waugh theorem states that the estimate of β1 and residuals
from (30) are numerically identical to the corresponding values of the follow-
ing abridged regression:

M2 y = M2 X1β1 + u, (32)

where M2y and M2X1 are both T ×1 vectors. We call (32) abridged, because
the transformed regressor M2X1 has only one column achieving a ‘radical’
simplification reducing the β vector to a scalar β1. The scalar GPF (23) can
now be used to construct a confidence interval for β1.

The choice of the first column in the partition X = X1+X2 can be rotated
to allow construction of confidence intervals for the remaining elements of β.
Hence, there is little loss of generality in our sequential approach. Even if
an economist’s hypothesis involves two regression coefficients, certain simple
rearrangements of the model are available to convert the inference problem as
inference on β1. For example, let the regression for a Cobb-Douglas produc-
tion function be: log(y) = α0 + α1log(K) + α2log(L), with output y, capital
K and labor L. Assume that the researcher wants a confidence interval on
the sum of two coefficients (α1 + α2) as a measure of economies of scale. Let
us rewrite the model as:

log(y) = β1[log(K) + log(L)] + β2ι + β3[log(K)− log(L)], (33)
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where ι denotes a column vector of ones for the intercept. Equating the right
side of (33) with that of the original Cobb-Douglas model, we have following
simple relations between the coefficients of the two versions: (i) α0 = β2.
(ii) The first coefficient of (33), β1 = (α1 + α2), indeed measures economies
of scale. (iii) Since β3 = β1 − α2 and β3 = α1 − β1, it indirectly measures
both α1 and −α2, which means that α1 and α2 are not individually identified
when one estimates (33).

Note that (32) amounts to regressing yo = M2 y on xo = M2X1, while
forcing the line of regression through the origin. Hence the quasi score func-
tion X ′ε becomes:

∑T
t=1 xo

t (ut) =
∑T

t=1 xo
t (y

o
t − xo

tβ1). The score at time t
becomes:

St = xo
t (ut) = (xo

ty
o
t )− (xo

t )
2β1. (34)

Next, we need the scale factor involving expectations: E(St)
2 = E(xo

tut)
2 =

(xo
t )

2E(ut)
2 = (xo

t )
2σ2. Hence the scale factor is: Sc = [

∑T
t=1(x

o
t )

2σ2]1/2 and
the scalar GPF for the regression problem is given by:

zG =
T∑

t=1

(S̃t), where (S̃t) = St/Sc. (35)

From our discussion near (28) recall that zG ⇒ N(0, 1), in the scalar case
(p = 1). Following Remark 4 we solve two equations: zG = (±1.96) from (35)
for the single unknown slope parameter β1 of (34) to estimate its confidence
limits. Next, we write a loop to provide confidence limits for all regression
coefficients by sequentially placing different columns of X into the first po-
sition. Thus the ‘radical’ simplification of the regression problem demanded
by the scalar GPF of (23) eventually yields GPF confidence intervals for each
coefficient in β.

6 Bootstrap Using Godambe Pivots

The main appeal of any bootstrap is that it provides robust confidence lim-
its, without assuming normality. Recall that many inference problems in
economics suffer from the identification problem so that the usual Fisher
pivot of a Wald test is problematic in light of Dufour’s impossibility theo-
rems. Now we avoid the problematic pivot and use the scalar GPF of (23)
for bootstrap inference on a typical regression problem in econometrics.
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Note that our bootstrap needs to create a large number (j=1,..,J=999,
say) of resamples of scaled scores at time t:

zF =
T∑

t=1

(Ŝt)/Ŝc, (Ŝt) = xo
t û

o
t , Ŝc = [

T∑
t=1

(xo
t )

2s2]1/2, (36)

where the scale factor Ŝc does not change from one resample to the next.
After computing the common scale factor once, we can focus on obtaining J
resamples of scores at time t denoted by (Ŝt)j for (j = 1, . . . J).

Clearly, since the right side of (Ŝt) in the middle part of (36) has two
terms, we have three choices for rotation as follows. We can make J versions
of ûo

t , (x
o
t ), or both. Let us choose the first alternative for simplicity, resample

ûo
t , and denote the J versions of regression residuals by (ûo)j, leading to

(Ŝt)j = xo
t (û

o)j. After dividing by the common scale factor and adding over
t we have our J scalar pivots, denoted upon inserting a second subscript j
as: zF,j for j = 1, 2, . . . 999.

Note that zF,j for j=1,2, .., 999 are sample realizations from an asymptotic
N(0,1) population. We expect them to be different from N(0,1) in finite
samples and the main appeal of the bootstrap here is that we are able to
use actual realizations to get robust estimates of the confidence interval for
zF , instead of using the usual ±1.96 for a 95% interval of parametric normal
density. Denote the order statistics of zF,j after reordering them from the
smallest to the largest, by z(j) for j=1,2, .., 999. Note that 95% of zF,j

are inside the range (z(25), z(975)), irrespective of the sign of (z(25), z(975)), by
construction.

Now two preliminary confidence limits on β1 are given by directly solving
the two equations zF = z(25) and zF = z(975) as:

b(1) = [
∑T

t=1 xo
t (y

o
t )− z(25)Ŝc]/

∑T
t=1(x

o
t )

2; (37)

b(2) = [
∑T

t=1 xo
t (y

o
t )− z(975)Ŝc]/

∑T
t=1(x

o
t )

2.

Finally, the 95% confidence intervals we seek are:

β1.LO = min(b(1), b(2)), and β1.UP = max(b(1), b(2)). (38)

We reject the null hypothesis: β1 = c (a constant), unless the hypothe-
sized constant c is inside the estimated interval (β1.LO, β1.UP ) based on (38).

For illustration, we return to Irving Fisher’s model (1), which contains
inflationary expectations. Let us model them explicitly by fitting an AR(1)
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model to price data and estimate (2) giving µ̂1 =0.9598, which is unbiased.
The strict form of Fisher’s null hypothesis: β1 = 1 means the expected value
of the coefficient of lagged price in our regression should be 0.9598. The OLS
estimate at 2.3021 is considerably larger than Fisher’s null (=0.9598), with
the usual t statistic of 7.009. Since Fisher’s null is rejected, lying outside the
95% confidence interval of (1.653, 2.951) based on the t statistic. Our robust
GPF bootstrap confidence interval using (38) before any HAE correction is
narrower: (2.170, 2.480) but still continues to reject.

Irving Fisher’s example has significant autocorrelation due to near zero
p-values of the Breusch-Godfrey statistic. Table 4 reports the results for all
20 models similar to Tables 1 and 3. Table 4 suggests heteroscedasticity from
low p-values of the Cook-Weisberg statistic. However, since the p-values are
all too close to zero in columns 4 for all comparable tables so far (Tables 1,
3 and 4), it would be interesting to compare the power of this statistic with
the Breusch-Pagan and other tests in a Monte Carlo experiment, beyond the
scope of this paper. Similar to Table 3, all (heuristic) p-values of column 3
of Table 4 exceed 0.05 suggesting no GARCH effects, unlike Table 1.

Figure 3 is a plot of heteroscedasticity correction revealing the non-
constant squared residuals (solid line) and how the simplest straight line
fit with time τ as the regressor (dashed line) fits them reasonably well (after
they are sorted). Of course, the quartic with HC0 has the best fit according
to column 5 of Table 4 and as depicted in Figure 4. Some details are omitted
for brevity.

After HAE estimation (correcting for first order autocorrelation and het-
eroscedasticity, in that order) and then using (38) the relevant HC0 linear
confidence interval is (1.673399 1.810466). A similar GPF interval for HC0
and quartic polynomial is (1.592199 1.799848). Since Fisher’s null remains
outside all these intervals, we must reject the strong form of Fisher’s hypoth-
esis. This is consistent with Sun and Phillips (2004). However, since the
number zero is also outside all the estimated confidence intervals, our results
support the weak form of Fisher’s null similar to our conclusion in Section 2
based on Dhrymes’ CCT statistic.

7 Summary and Final Remarks

This paper suggests some practical solutions to problems including: auto-
correlated and or heteroscedastic errors, endogeneity, identification, spurious
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regression and incidental parameters. Section 1.1 shows how the identifica-
tion of deep parameters becomes difficult in attempting to solve endogeneity
and/ or spurious regression. Our illustration uses Vinod’s (2004, 2006) new
maximum entropy bootstrap, freely available as the ‘meboot’ package in the
R software. It can help focus on economic specifications of equilibria while
avoiding differencing and detrending. Remark 1 describes the unrealism of
random walks due to their infinite memory, without discounting.

Feasible GLS needs estimates of the large T × T covariance matrix of
errors, Ω(φ), as a parsimonious function of φ. Remark 2 states a parsimony
rule of thumb that number of coefficients in φ should be less than (T/5)− p.
Hence, parsimony here becomes an upper limit on dim(φ). Since HAC esti-
mates of standard errors, SE(b), typically use all T diagonals of estimated Ω
and several off diagonals, they suffer from the ‘incidental parameters’ prob-
lem. We propose heteroscedasticity cum heterogeneity and autocorrelation
efficient (HAE) estimates of β by first fitting ARMA(q, q−1) to residuals for
autocorrelations. If squared residuals (û)2 of a transformed model are non-
constant, we suggest making them monotonic by sorting, and finding their
fitted values by regressing log(û)2 on a powers of (1, 2, . . .). A (t-dom ↔
v-dom) map involving sorting recovers the original time subscript for (û)2,
fitted with very few additional parameters in φ and results in a new, practical
and parsimonious correction for heteroscedasticity.

We discuss how mappings between the time domain and the new (ordered
numerical values) v-domain are analogous to mappings in spectral analysis
between time and frequency domains (through Fourier integrals). Assuming
smoothness of heteroscedasticity in the v-domain, f(Ω(tt)), and further as-
sumptions, a theorem proves consistency and asymptotic normality, efficiency
and specification-robustness of our HAE estimator. The intuition behind the
smoothness assumption is that conditional scaling of E(y|X) is fundamen-
tally related to the numerical magnitudes (of y and X) in the v-domain, and
need not depend on their timing. A simulation experiment uses a published
design where OLS is found hard to beat in small samples. We still use small
samples (T = 24, 46) and report efficiency gains over OLS achieved by our
new HAE estimators. The simulation supports the econometric practice of
formally testing for heteroscedasticity before considering any corrections.

In the presence of even mild identification problems, inverting Wald-type
tests based on Fisher’s pivot into confidence intervals leads to wide inter-
vals with poor coverage, Dufour (1997). Furthermore, a lack of invariance of
Wald-type test statistics under nonlinear transformations of parameters has
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been noted in the literature. Proposition 1 in Vinod (1998) proved that Go-
dambe pivot functions (GPFs) are a robust alternative to Fisher’s pivot. Un-
fortunately, my 1998 implementation of GPF for regressions was somewhat
impractical. This paper provides a practical implementation of a scalar ver-
sion of the GPF for p > 1 dimensional β by rotating over regressor columns
in X, while using the Frisch-Waugh theorem. Two examples demonstrate
that proposals included here are novel, practical and worthy of further study
and extension.
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Figure 1: Consumption Function using Logs of consumption and income,
HC0 & Linear Case.
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Figure 2: Consumption Function using logs of consumption and income, HC3
& Quartic polynomial.
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Figure 3: Heteroscedasticity correction for Irving Fisher’s model (HC0, Lin-
ear)
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Figure 4: Heteroscedasticity correction for Irving Fisher’s model (HC0, Quar-
tic)
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Figure 5: SC1 to SC5 scedasticities built from Student’s t (df=5) with lines
marked 1 to 5, Results of 999 experiments
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Figure 6: SC1 to SC5 scedasticities built from Student’s t (df=5) with lines
marked 1 to 5, Results of 999 experiments
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Table 1: Consumption Function (logs) Heteroscedasticity Tests and Efficient
Estimation

Transform Order of p-value p-value Adjusted Coef Yt−1 t- stat

of û2 τh GARCH Cook R2 after β̂3

polynomial Weisberg Vh

1 2 3 4 5 6 7
HC0 & HC1* linear 0.017035 1.78E-07 0.898769 0.113114 2.740047
HC2 linear 0.017667 1.80E-07 0.899142 0.119206 2.881599
HC3 linear 0.015957 2.17E-07 0.899629 0.126247 3.021648
HC4 linear 0.016931 3.26E-07 0.900355 0.127205 3.045798
HC0 & HC1 quadratic 0.017035 7.97E-06 0.962918 0.126987 3.717827
HC2 quadratic 0.017667 7.92E-06 0.963051 0.136624 3.991833
HC3 quadratic 0.015957 8.24E-06 0.962909 0.142172 4.119112
HC4 quadratic 0.016931 8.48E-06 0.962857 0.142589 4.134217
HC0 & HC1 cubic 0.017035 2.15E-06 0.989095 0.133066 4.279686
HC2 cubic 0.017667 2.17E-06 0.989188 0.145817 4.6842
HC3 cubic 0.015957 2.54E-06 0.989195 0.15069 4.821263
HC4 cubic 0.016931 3.89E-06 0.989822 0.151141 4.844722
HC0 & HC1 quartic 0.017035 7.30E-06 0.989817 0.133713 4.31633
HC2 quartic 0.017667 7.48E-06 0.990041 0.146747 4.731231
HC3* quartic 0.015957 8.77E-06 0.990152 0.151421 4.863972
HC4 quartic 0.016931 1.23E-05 0.990951 0.1519 4.890656
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Table 2: Heteroscedasticity and autocorrelation efficient (HAE) feasible GLS
Estimates of Coefficients of Consumption Function. HC3 weights and quartic
polynomial.

Variable Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.13513 0.18261 0.740 0.463
Ct−1 0.85103 0.03216 26.466 < 2e-16 ***
Yt−1 0.15142 0.03113 4.864 1.33e-05 ***
Confidence intervals are given below

limits → 2.5 % 97.5 %
(Intercept) -0.23223443 0.5024996
Ct−1 0.78634028 0.9157164
Yt−1 0.08879294 0.2140481
GPF interval
Ct−1 0.8382396 0.8662133
Yt−1 0.1365905 0.1640065

Notes: Residual standard error: 1.002 on 47 degrees of freedom, F(2,47):
5.098e+06, p-value: < 2.2e-16.
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Table 3: Consumption Function (levels of consumption and income) Het-
eroscedasticity Tests and Efficient Estimation

Transform Order of p-value p-value Adjusted Coef Yt−1 t-stat

of û2 τh GARCH Cook R2 after β̂3

polynomial Weisberg Vh

1 2 3 4 5 6 7
HC0+HC1 linear 0.681493 2.00E-12 0.750405 -0.01265 -0.24757
HC2 linear 0.720334 2.00E-12 0.749499 -0.00685 -0.13298
HC3 linear 0.727052 2.00E-12 0.748637 -0.00261 -0.05013
HC4 linear 0.834826 2.00E-12 0.747702 0.000515 0.009834
HC0+HC1 quadratic 0.681493 1.45E-06 0.816421 0.004893 0.103459
HC2 quadratic 0.720334 1.59E-06 0.81611 0.012737 0.267426
HC3 quadratic 0.727052 1.77E-06 0.815715 0.02009 0.415827
HC4 quadratic 0.834826 2.46E-06 0.816499 0.021627 0.446801
HC0+HC1 cubic 0.681493 7.00E-12 0.928736 0.041506 0.886886
HC2 cubic 0.720334 7.00E-12 0.928604 0.048026 1.023175
HC3 cubic 0.727052 7.00E-12 0.928071 0.058709 1.233592
HC4 cubic 0.834826 7.00E-12 0.927259 0.061022 1.281598
HC0+HC1 quartic 0.681493 6.20E-11 0.944189 0.055225 1.139573
HC2 quartic 0.720334 6.50E-11 0.944342 0.060819 1.250255
HC3 quartic 0.727052 7.10E-11 0.944218 0.07102 1.442987
HC4 quartic 0.834826 1.01E-10 0.944388 0.076907 1.55493
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Table 4: Heteroscedasticity Tests and Efficient Estimation of Irving Fisher’s
Interest Model

Transform Order of p-value p-value Adjusted Coef Yt−1 t-stat

of û2 τh GARCH Cook R2 after β̂3

polynomial Weisberg Vh

1 2 3 4 5 6 7
HC0 & HC1 linear 0.091043 0 0.904123 1.71222 17.19788
HC2 linear 0.089014 0 0.905313 1.711027 17.18616
HC3 linear 0.080592 0 0.906315 1.705157 17.115
HC4 linear 0.082642 0 0.906847 1.670015 16.23623
HC0 & HC1 quadratic 0.091043 0 0.938854 1.720717 22.15223
HC2 quadratic 0.089014 0 0.939214 1.720425 22.09011
HC3 quadratic 0.080592 0 0.939367 1.717629 22.00533
HC4 quadratic 0.082642 0 0.938702 1.666006 20.36984
HC0 & HC1 cubic 0.091043 0 0.980066 1.696319 26.98915
HC2 cubic 0.089014 0 0.979928 1.696755 26.89194
HC3 cubic 0.080592 0 0.979593 1.696202 26.79802
HC4 cubic 0.082642 0 0.978245 1.617693 24.35959
HC0 & HC1 quartic 0.091043 0 0.987116 1.666412 28.2777
HC2 quartic 0.089014 0 0.986846 1.667331 28.1693
HC3 quartic 0.080592 0 0.986363 1.667648 28.06705
HC4 quartic 0.082642 0 0.984885 1.582449 25.71994
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