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Abstract

There is a large literature in economics and elsewhere on the emergence and evo-
lution of cooperation in the repeated Prisoner’s Dilemma. Recently this literature has
expanded to include cooperation in spatial prisoner dilemma games where agents play
only with local neighbors in a specified geography. In this paper we explore how the
ability of agents to move and choose new locations and new neighbors influences the
emergence of cooperation. First, we explore the dynamics of cooperation by investigat-
ing agent strategies that yield Markov transition probabilities. We show how different
agent strategies yield different Markov chains which generate different asymptotic be-
haviors in regard to the attainment of cooperation. Second, we investigate how agent
movement affects the attainment of cooperation in various spatial networks using agent
based simulations.
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1 Introduction

The repeated Prisoner’s Dilemma game, though widely studied, continues to generate inter-

est among economists and social and natural scientists, in general. Despite the pessimistic

outcome of the one-shot game, which has only one Nash equilibrium with both agents de-

fecting, the repeated game offers a veritable embarrassment of riches in terms of equilibrium

outcomes.

In addition, in both the human and natural worlds, though many opportunities for selfish

behavior constantly arise, agents often display cooperative behavior (Poundstone 1992). As

the folk theorem indicates, almost any infinite series of actions is a possible equilibrium, given

that defect-every period is an available strategy. The folk theorem, however, says nothing

about what kind of behaviors may emerge that can foster a long-run cooperative equilibrium.

To address the issue of equilibrium emergence several approaches have been taken includ-

ing evolutionary game theory (Fudenberg and Maskin, 1990), equilibrium selection models

(Imhof, et al., 2005) and also agent-based approaches (Wilhite, 2006).

A variation on the theme of the RPD is to incorporate a spatial dimension to agent

interactions since players must “live” somewhere, and they generally interact with their

neighbors within larger networks of say cities, organizations, or social networks. The spatial

Prisoner’s Dilemma has received wide attention within theoretical biology (Nowak et al.,

1994), but less so in economics. In addition, economic agents can decide where to locate,

and this choice may depend on the actions of their neighbors (rivals). Thus it is natural to

embed a location choice of agents into a spatial Prisoner’s Dilemma.

In this paper we focus on outcomes of a Prisoner’s Dilemma game where agents choose

their neighborhood and thus choose their interaction partners. We allow agents to compare

the payoffs of their current location to other locations, and they can move if the payoffs in

the alternative location are greater.

There are competing theories as to the effect of agent movement on the attainment of
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cooperation in a spatial Prisoner’s Dilemma. Agents receive larger payoffs if they live in a

neighborhood with large numbers of cooperating agents (this is true whether the agent of

interest is a defector or cooperator herself). Thus agents currently located in a neighborhood

with many defectors can improve their payoffs by moving to a neighborhood with more

cooperating agents. In essence, the ability to leave defectors allows agents an indirect means

of punishing defection by opting out of low payoff interactions. Competing with this theory

is the idea that agent movement gives defecting agents the ability to invade cooperating

neighborhoods. This invasion may deteriorate levels of cooperation in the neighborhood and

lead to lower levels of cooperation overall. We focus on these two competing possibilities in

this paper. We discuss the conditions that generate the ability of agent movement to increase

cooperation and provide simulation examples which demonstrate these conditions. To the

best of our knowledge, no other work has explored the roles that neighborhood comparison

and movement can have on cooperation.

In summary, we show that the effect of movement is a function of network and neighbor-

hood structure. Here we explore three different networks: a circle, a lattice, and “discrete”

networks, which are several separate networks with agents fully-connected within each net-

work. We show, for example, that with a circular network, movement can greatly increase

cooperation, while there is a non-monotonic relationship between cooperation and neighbor-

hood size. With lattice networks, we again see a very large increase in cooperation with

movement. But the effect is larger when neighborhoods have 8 neighbors, rather than 4

neighbors. However, with the discrete networks, movement, in fact, decreases cooperation.

We discuss the reason for these findings below.

The rest of this paper proceeds as follows. The next section gives an overview of the

literature on cooperation in the Prisoner’s Dilemma, spatial PD games, and agent movement.

Then section 3 introduces the basics of the PD model. Following that, section 4 introduces

the set of strategies that agents play. Here we focus on a specific class of mixed-strategies
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that have the Markov property. Section 5 discusses the effects of agent movement within

a spatial setting. Then section 6 presents the results of our simulation experiments, which

looks at the effect of agent movement in three different network structures. Lastly, section

7 offers some concluding remarks.

2 Related Literature

Studies of the maintenance of cooperation in the Prisoner’s Dilemma are vast. Economists

are long familiar with the “folk theorem” (Fudenberg and Tirole, 1996), which says that

agents can maintain cooperation in an infinitely repeated Prisoner’s Dilemma as long as the

future is not discounted too heavily.

More recently, other means of maintaining cooperation in the Prisoner’s Dilemma have

been studied. Examples range to include reputation (Nowak and Sigmund, 1998), reciprocity

(Axelrod, 1984), the use of tags and signals to recognize opponent types (Riolo, 1997; Riolo

et al., 2001; Hales, 2001; Janssen, 2008), and withdrawal from play (Aktipis, 2004; Janssen,

2008).

Previous research has shown that incorporating a spatial element into a repeated Pris-

oner’s Dilemma setting can result in cooperation due to the assortment of neighborhoods

into areas of cooperation and areas of defection (Brauchli et al. 1999, Ferriere and Michod

1995, Killingbach and Doebeli 1996, Nowak and May 1992). This research suggests that

spatial interactions are one way to produce repeated interactions that can result in cooper-

ative behavior. In this paper we extend this literature by having agents move or relocate in

the space in which interactions take place; agent strategies are governed by behavioral rules

commonly used in spatial studies of the Prisoner’s Dilemma.

Again note that the results derived from movement are not obvious at the outset. Move-

ment may allow agents with a propensity to defect the ability to invade cooperators and thus

lead to lower levels of cooperation. Or movement may allow agents with a propensity to co-
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operate the ability to avoid defectors and lead to higher levels of cooperation. Thus the focus

of this paper is on how movement affects the attainment of cooperative outcomes (equilibria)

within the behavioral structure described below. Finally, the ability of agents to move across

a spatially defined interaction structure may be seen as an example of endogenous network

formation in repeated play games.

Most closely related to the implementation of the Prisoner’s Dilemma in our paper is the

work on the maintenance of cooperation in spatial models (Nowak and May, 1992; Nowak,

Bonhoeffer and May, 1994; Schweitzer, Behera and Muhlenbein, 2002). In these models

it is shown that repeated interaction with local neighbors may lead to the evolution of

cooperation in a Prisoner’s Dilemma.1Wilhite (2006) explores RPD cooperation for several

different network architectures. Agents update their actions each period by imitating their

rivals, playing the same action as the rival with the largest payoff in the previous period. He

finds that in a complete network (with synchronous updating), all agents become defectors

after the first round of play, as long as one agent was a defector initially. On the other hand,

with a star network, all agents play the same action after one round, but it can be either

cooperate or defect; which strategy emerges in equilibrium is a random variable. With a ring,

on the other hand, both actions can exist side by side in equilibrium, but cooperators tend

to make up the majority of actions. With a grid (lattice) again, cooperators and defectors

can live side by side, in equilibrium, but the dynamics can often behave chaotically. In sum,

Wilhite’s paper shows with even a simple imitation-based rule, network structure can have

important implications for the emergence of cooperation, and we explore this effect with

both agent movement and mixed-strategies.

There has been a limited amount of work on movement in the spatial Prisoner’s Dilemma.

Aktipis (2004) studies the performance of a behavioral rule named “Walk Away” (WA).

With WA an agent always cooperates but if its opponent defects, the agent moves to a new

1The introduction to Schweitzer, Behera and Mühlenbein (2002) provides a nice overview of the literature
on cooperation in the Prisoner’s Dilemma.
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location. This strategy is tested in a tournament environment similar to Axelrod (1984). The

WA strategy is tested against standard rules such as Anatol Rapport’s Tit-for-Tat, (copy

opponent’s last action) and Nowak and Sigmund’s PAVLOV (switch action from cooperate to

defect or defect to cooperate if the agent’s opponent defects.) Aktipis shows that the simple

walk away strategy performs well against these other well-known strategies even though it

is very simple. WA is successful because movement allows agents to engage in repeated

interactions with cooperators but avoid defectors.

Note however that movement may not necessarily lead to cooperation in general. Move-

ment could be valuable for agents with a propensity to defect by allowing them the ability to

invade and exploit a neighborhood of cooperators (Dugatin, 1992; Dugatin andWilson, 1991;

Enquist and Leimar, 1993). Thus the study of movement within the context of standard

economic behavioral rules and across different spatial structures is warranted.

The literature on exit or refusal to play may be seen in a similar spirit to movement

(Janssen, 2008; Schluessler, 1989; Vanberg and Congelton, 1992). In our context agents who

refuse to play with a past defector may be seen as agents who no longer play because they

have re-located.

In a similar spirit to our work, Hanaki et al. (2007) investigate the evolution of coopera-

tion when agents can decide whether to create or destroy network connections based on the

costs and benefits of these connections (i.e., they present a model of partner choice). Again,

as is common in the literature, agents imitate the action of the rival with the highest payoff.

They find, for example, that there is a positive correlation between the size of the network

and the degree of cooperation. In addition, they also find that “sparse” networks are needed

to maintain cooperation; that is, agents cannot be fully connected for cooperation to be

sustained.
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Rival’s Action
Coop. Defect

Agent’s Action Coop. A B
Defect C = A+ ε D = B + μ

Table 1: An agent’s payoffs in the Prisoner’s Dilemma game

3 The PD Game on a Network

In this paper, we work with the standard Prisoner’s Dilemma game, whose payoffs structure

is given in Table 1. where C > A > D > B and C + B < 2A. To simplify matters we

set the “cheat” payoff such that C = A + ε, where ε > 0. Define an agent and his rival’s

actions as x, y ∈ {0, 1} , where x, y = 1 if an agent (rival) cooperates, 0 otherwise; let

α ≡ {A,B,C,D} = {A,B,A+ ε,B + μ}. Then we can write the payoff function for any

agent, given a rival’s action as

π (x, y;α) = Axy +Bx (1− y) + C (1− x) y +D (1− x) (1− y)

= Ay +B (1− y) + [εy + μ (1− y)] (1− x) .

Further, suppose an agent plays against n rivals, the average payoff is given by

π̄ (x, y;α) =
1

nx

1

ny

nX
i=1

π (xi, yi) = Aρ+B (1− ρ) + [ερ+ μ (1− ρ)] (1− λ) ≡ π (λ, ρ) , (1)

where ρ =
P

yi/ny is the proportion of rivals that play cooperate, and λ =
P

xi/nx is the

proportion of times an agent cooperates against her neighbors. In short, the average payoff

to the agent is given by a weighted sum of A and B payoffs, plus a “defector’s bonus” given

by [ερ+ μ (1− ρ)], which is earned in 100 (1− λ)% of games against the rivals. Notice

that ∂π (λ, ρ) /∂λ = − [ερ+ μ (1− ρ)] < 0, and thus, ceterus paribus, an increase in the

cooperation rate for an agent will reduce her payoff. If everyone cooperates then the agent

gets an average payoff of A; if everyone defects the agent gets an average payoff of B+μ = D.
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Also notice that ∂π (λ, ρ) /∂ρ = (A−B) + (ε− μ) (1− λ) > 0, which means an agent will

strictly prefer to play with more cooperators, if given the choice of with whom to play.2

4 Markov Strategies

We focuses on a class of mixed strategies that evolve over time based on an agent’s play with

his rivals (similar in spirit to Nowak, et al., 1994). Here each agent’s probability of playing

cooperate against a rival in the next round is given by

pt+1 = f (λt, ρt;α) ,

where λt is the proportion of times an agent cooperates against his rivals, and ρt is the

fraction of rivals who cooperate in a particular round; 1− pt+1 is the agent’s probability of

defecting. Denote f (λt, ρt;α) as the Probability Evolution Function (PEF). Note that here

a “round” is the time during which all agents play against each of their rivals. For example,

if there are N agents and each agent has n rivals, then a round constitutes a total of Nn

games, with a total of 2Nn action choices (assuming each agent chooses n actions according

to his PEF; and n rivals each choose an action according to their PEFs).3

In short, the strategy for an agent is evolving based on the outcomes of last round’s play

with his rivals. For the moment, we make no assumptions about the PEF, except simply that

pt ∈ [0, 1] for all rounds and all agents. Further we assume that the PEF is determined by

play with agents that are directly in an agent’s network; for example, if an agent’s network

is described as a particular graph, the PEF is based on play with rival’s to whom the agent

is directly connected in the graph.

2This assumes that if ε < μ, then (A−B) > (ε− μ) .
3For the rest of this section, for simplicity, we assume that each agent has the same number of rivals.

In the simulations given below, the number of rivals may not be the same for all agents, depending on
the network structure. Also, when clarity can be preserved, time subscripts will be dropped for notational
convenience.
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This class of strategies generates a Markov chain, where the state of the system is de-

scribed by a value k. Depending on the specific PEF, k can either be the number of coopera-

tors in a given round, or it can be an integer that indexes the (uniquely determined) outcomes

from a round of play. Denote the set qit ≡ {xi1t, ..., xint, yi1t, ..., yint} ∈ {0, 1}2n as the set of

actions by agent i and his rivals in a particular round t. Then we can denote Qt= ×N
i=1qit as

the set of all actions played in a given round. Each set qit has (2n)
2 possible outcomes, and

Qt has (2Nn)2 possible outcomes. Thus we have the index set k ∈
©
0, 1, 2, ..., (2Nn)2 − 1

ª
,

which assigns an integer to each possible outcome in Qt ∈ Q, where Q is the set of all binary

vectors of size 2Nn.

It is straightforward to show that the PEF generates a Markov chain. Each round, we

denote a realization of actions asQt ∈ Q; this vector of actions then gives rise to each agent’s

updated PEF. That is, pit+1 = f (g (qit)) , were g (·) converts actions to their respective

cooperation rates. In addition, k can be generated from Q (such as when k is the base-10

integer equivalent of Qt), i.e., kt =
P2Nn

i=1 zit2
2Nn−i, where zit ∈ {0, 1} is the ith element of

Qt.

Given that we have a state kt, and each agent has a probability of playing cooperate in

the next round, pit+1, we can (with some effort) determine the probability of each outcome

of Qt+1 and hence kt+1. Thus the probability of going from state kt to kt+1 is a function of

Qt, which is determined by the vector of probabilities {p1t, ..., pNt} .

In summary, each agent has a probability of cooperating. This gives rise to a distribution

for k, the number of possible states. Given that each k is associated with a particular

outcome of a round of the RPD, each Qt and hence kt gives rise to a set of probabilities for

each agent’s PEF. Thus each k let’s us calculate the probability of going to state k+1. This

is now stated formally.

Proposition 1 A RPD game, where each agent plays a mixed strategy according to f (λt, ρt;α) ,
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gives rise to a Markov chain, with transition probabilities given by

T (kt+1|kt) = Pr (K = kt+1|kt) = h (f (λ1t, ρ1t) , ..., f (λNt, ρNt))

= h (p1 (k) , ..., pN (k)) ,

where h (·) is a function which converts the vector of agents’ cooperation probabilities to a

distribution over k.

Proof. Each round gives rise to a realization of actions, Qt= ×N
i=1qit. This realization

can then be assigned an index number, kt =
P2Nn

i=1 zit2
2Nn−i, where zit is the ith element

of Qt. Given Qt, each agent updates his probability of playing cooperate based on pit+1 =

g (qi) = f (λi, ρi) . pit+1 then gives rise to a distribution over kt+1, since Prob (qit+1 = q) is a

function of probabilities that each agent (and rival) will cooperate in any given game. Thus,

the RPD game gives rise to Markov transition probabilities: T (kt+1|kt) = Pr (K = kt+1|kt) ,

since the probability that the state will be kt+1 is determined by kt, which emerges from the

realization of Qt.

Note that the function h (·) can be simple or complicated based on the spatial topology

on which the agents interact. Once the transition matrix is given and initial probabilities

of playing cooperate are assigned, the asymptotic probabilities of being in a given state,

τ t = Tτ 0, can be determined, where τ t is the probability of being in each state at time t. In

other words, we can investigate the outcome of the repeated Prisoner’s Dilemma game based

on the properties of the Markov chain generated by the probability evolution function.

4.1 Example I

Suppose that we have N = 3 agents, who are each connected to each other. Further suppose

that each agent determines his probability of playing cooperate simply based on what his

other two rivals do, and which is given by pi = Aκi
2A+ε(2−κi) , where κi ∈ {0, 1, 2} is the number
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of rivals that cooperate. To make things simple, assume that each agent chooses one action

at the beginning of the round and plays the same action against all rivals. Notice that this

one action assumption reduces the number of possible states.

For example, let a set of actions be given by xt= {1, 1, 0} , then pt+1=
©

A
2A+ε

, A
2A+ε

, 1
ª
.

The transition matrix is then given by T =

kt+1

3 2 1 0

3 1 0 0 0

kt 2
¡

A
2A+ε

¢2
2
¡

A
2A+ε

¢ ¡
A+ε
2A+ε

¢ ¡
A+ε
2A+ε

¢2
0

1 0
¡

A
2A+ε

¢2
2
¡

A
2A+ε

¢ ¡
A+ε
2A+ε

¢ ¡
A+ε
2A+ε

¢2
0 0 0 0 1

.

In this case, each row of T is binomial distribution. Notice that there are two absorbing

states, meaning that in this case, all agents defecting or all agents cooperating are the only

asymptotic outcomes.

4.2 Example II

Assume now that there are only two agents, and further each agent’s probability is a weighted

average of his action and the action of his rival, i.e., pi = βxi+ (1− β)x−i, where β ∈ (0, 1)

Here the action set Q = {{0, 1} , {0, 1}} , with 4 possible states. Thus the transition matrix
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is T =

kt+1

{1, 1} {1, 0} {0, 1} {0, 0}

3 2 1 0

{1, 1} 3 1 0 0 0

kt {1, 0} 2 β (1− β) β2 (1− β)2 β (1− β)

{0, 1} 1 β (1− β) (1− β)2 β2 β (1− β)

{0, 0} 0 0 0 0 1

.

Notice that in this case, the number of states can be reduced to simply the total number of

times cooperation is played in a given round. Then the transition matrix becomes T =

kt+1

2 1 0

2 1 0 0

kt 1 2β (1− β) (1− β)2 + β2 2β (1− β)

0 0 0 1

.

Note that if this rule was applied to three agents, where each agent chooses one action each

round and say pi = βixi + βjxj + βkxk, where
P

βi = 1, then the action set is Q = {0, 1}3 ,

with 8 possible states, which then could be reduced then be reduced to 4 states, which

represents the number of agents who play cooperate each round. Then with N agents, Q

would have N2 possible actions (states), which could be reduced to (N + 1) states. Thus as

we expand the number of agents, even for a simple rule the number of states and hence the

transition matrix soon becomes quite cumbersome to work with. Note that with a less than

fully connected network and with agents playing a new action against each rival, calculating

the transition matrices will be even more cumbersome since each agent’s probability of

cooperating will depend on its neighbors’ actions. Thus generating the probabilities of going

from one state to another can be quite tedious; for this reason we rely on simulations to
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explore the likelihood of cooperation emerging.

5 Agent Movement and Spatial Interactions

We now consider the effects of agent movement given their spatial interactions. Throughout

the discussion, we assume that each agent is given an opportunity to move to a new ran-

domly chosen location (specified below) with an exogenously given probability. When the

opportunity arrives, agents choose to move to the alternative location or to remain in their

current location using a myopic decision rule. Specifically, the agent compares the average

payoff received in the current round across games she played at the current location to the

average payoffs she would have received if she was at the alternative location. To determine

these alternative payoffs the agent plays a fictional game with each potential new neighbor

according to the neighbors’ and agent’s current mixed strategies. The agent then calculates

an average payoff in these fictional games. If the alternative location would have provided

better average payoffs, she moves. Otherwise she stays at her current location.

For a particular agent, movement will occur when ∆π ≡ π (λ0, ρ0) − π (λ, ρ) > 0, where

λ0, ρ0 are the cooperation rates in the new, potential location. Since E [λ0] = E [λ] = p, it’s

straightforward to show that

E [∆π] = E (ρ0 − ρ) [(A−B) + (ε− μ) (1− p)] .

Thus, on average, movement will occur when (ρ0 > ρ); that is when the new location has

more cooperators than the old.4

4Note that this is what is expected on average, but it is still possible for an agent to move to the alternative
neighborhood when there are fewer cooperators. For this to occur, the agent must randomly choose to defect
a sufficiently larger number of times when playing the fictional game in the new neighborhood compared
to the number of times she defected in the current neighborhood, so that the extra payoff from defection
“pays” for the “loss” of having fewer neighbors who cooperate. In other words, if the agent finds herself, by
chance, to be an extreme defector in the alternate neighborhood, she may expect it to be profitable to move
into this neighborhood, which could potentially cause defection to spread throughout the network.
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5.1 The Effect of Movement

We now want to consider what effect agent movement will have on the attainment of cooper-

ation given the PEF of the agent. We know from above that, on average, an agent will move

into the alternative neighborhood if that neighborhood contains more cooperating agents. In

order for agent movement to have a positive effect on the attainment of cooperation, move-

ment must result in a transition matrix more favorable for cooperation. However this is a

complex process; when an agent moves, the agent effects his own probability of cooperation

in the next round as well as the probability of cooperation for the agents in his old (by his

exit) and new (by his arrival) neighborhoods. Each of these probabilities directly depends

on the specific PEF of the agents and the structure of agent interactions.

To simplify matters we focus only on one specific PEF (equation (2) below); this way

we can isolate the effects of movement and network structures. We have specifically chosen

a PEF that has two properties that aid in the analysis. The first property is that the PEF

has only two absorbing states (equilibria): everyone on the network will either cooperate or

defect. Each agent reaches a probability where she always cooperates or always defects in

equilibrium, there are no mixed probabilities in equilibrium.5 This allows us to focus simply

on the percent of agents in each absorbing state at the end of a run of a simulation. The

second property is that the PEF is imitation based. That is, agents look to the performance

of their neighbors when updating their strategies. Imitation is an important part of the

evolution of cooperation (Wilhite, 2006; Hanaki, et al., 2007). If all agents simply played a

best-response, for example, defection would be the only stable equilibria.

Specifically, we assume that an agent’s PEF is given by the relative performance of the

5See discussion below.
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rivals against him:6

p =

Pn
j π (yj, xj) yj,Pn
j π (yj, xj)

, (2)

where xj is the action choice of an agent against, rival j; yj is the rival’s action choice.

Inserting the payoff function (eq. 1) and performing some algebraic manipulation we get the

following PEF.

p (λ, ρ) = λ
Aρ

A+ ε (1− ρ)
+ (1− λ)

Bρ

B + μ (1− ρ)
.

Notice a few properties of this rule: p (λ, 0) = 0 and p (λ, 1) = 1, which means that if all of

the rivals of an agent select the same action, an agent will play that action with probability

one. Further the transition matrix will always have everyone cooperate and everyone defect

as an absorbing state of the system. Also notice that ∂p/∂ρ ≥ 0. This positive partial

derivative is an important feature of the PEF. Since, as discussed above, an agent will likely

move into a new neighborhood if the percentage of cooperating agents is greater than in her

old neighborhood, then the agents probability of cooperation will increase. One may initially

think that movement will generate more cooperation with this PEF. But, also consider that

an agent with a high likelihood of defection can move into a neighborhood that contains

mostly cooperators and decrease all of his neighbor’s probability of cooperation. This effect

can be more severe when neighborhoods are smaller. And, when this occurs the defecting

agent pulls down the probability of cooperation for all of the agents in this neighborhood.

This effect can then cascade as each neighbor is then playing with a group of agents who each

have a decreased probability of cooperation which can then lead to further decreases in the

probability to cooperate, etc. Thus, with this PEF we have the possibility that movement

may increase or decrease cooperation.

6Our rule is similar in spirit to the one used in Nowak, et al. (1994). However, the rule used here is
different in that agents update their probabilities based on their neighbors actions, whereas Nowak, et al.’s
rule is based on the actions of neighbors and neighbors’ neighbors.
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Figure 1: Three types of agent networks: circle, lattice and discrete neighborhoods.

6 Simulations

We now examine how movement and partner selection impacts the attainment of cooperation

across various spatial structures. We consider three types of spatial topologies: circular

neighborhoods of various size, a lattice based neighborhood, and discrete neighborhoods

that are fully connected within a neighborhood but disjoint across neighborhoods. These

three are chosen because they allow for a comparison of three common network types, and

may be relevant for geographic analysis. Clearly more types of networks can be explored,

such as small world or scale-free distributions, but for simplicity we just focus on these three.

In all of the experiments below we will have 100 agents and 144 locations available for

agents to locate. Thus 44 locations will be empty in each round and available for agents to

move there. We will examine two different scenarios in each parameter set considered: no

movement and full movement. With no movement, each agent is assigned to a randomly

chosen location at the beginning of the simulation and the agent remains there throughout.

With full movement, each round, each agent is allowed the option to move to a randomly

chosen vacant location. As described above, if the payoffs the agent received in the current

round are less than the payoffs she would have received in the alternative location, she moves

to the alternative location; otherwise, she remains in her current location.
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Each simulation run proceeds as follows:

1. Initially, each agent is assigned a unique randomly chosen location on a graph (which

varies across experiments) and a probability of cooperation randomly drawn from uni-

form [0,1] distribution.

2. Each agent plays a game with each of his neighbors and the average payoffs are calcu-

lated for each agent. Note that for each game, the agent chooses an action according

to his probability distribution.

3. When all games have been played for a given round, each agent is then given the

opportunity to move to a new location.

4. Once all movement decisions have been made, each agent then updates her pi according

to the results of the various games. Thus the agents update their probability of cooper-

ation simultaneously at the end of a round; mid-round adjustments of the probability

to cooperate are not allowed.7

5. Then the next round of the simulation occurs, following the same procedure discussed

above.8

We run the system for 100,000 rounds or until the system reaches an absorbing state

(where all agents either cooperate or defect 100% of the time) whichever comes first.9 These

100,000 rounds are a run of the simulation. When a run is complete we calculate the average

probability of cooperation across all agents in the population. We complete 100 runs for each

7Note that when agents move there is the possibility that there will be new agents, who were not present
when the agent played his set of games. The PEF, however, evolves according to who the agent played with
and not the new agents, if there are any. Thus in some sense agents’ PEF evolve according to the nature of
the neighborhood rather than, possibly, the neighbors themselves.

8We also have tried several alternative specifications of our model such as: synchronous vs. asynchronous
updating of probabilities, different orderings for when an agent updates her probabilities and when she moves,
and different initial distributions for the probability of cooperation. None of these alternatives resulted in
qualitatively different results.

9It is a rare instance that the simulations time-out at 100,000 rounds. But in order to complete the
simulations in a timely manner we set this upper bound on the time to converge to an absorbing state.
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parameter set and report the average probability of cooperation that results at the end of

each run.

6.1 Circular Neighborhoods

We begin with a circular topology where agents are located on a “ring.” In this model,

a neighborhood is defined by a number of locations f in each direction on the ring; each

location has 2f neighbors. Enumerate each location in the ring 1, 2,...,144. If an agent is

located at location 20 and f = 1 then the agent has two neighbors, the agent at location

19 and the agent at location 21 (assuming these locations are not empty.) Note that empty

locations may create fewer neighbors for a given agent.

To begin we use a set of base payoff values and vary the number of neighbors f . Payoffs

are as follows: A = 3.0, B = 1.0, C = 4.0, and D = 2.0. We vary f between 1 and 16 and

report the levels of cooperation that result for the no movement and full movement case in

Table 2.

Number of Neighbors (2f) No Movement Full Movement
2 0.39 1.00
4 0.22 0.46
8 0.07 0.37
16 0.18 0.84
32 0.53 1.00

Table 2: Effect of neighborhood size on probability of cooperation. Percentage of cooperators
versus neighborhood size, for a circular network. Results are averages of 100 runs. A =
3, B = 1, C = 4,D = 2.

As reported in the table, allowing movement always results in a higher probability of

cooperation. The results occur because agents are able to opt out of neighborhoods with

agents who commonly defect and move into cooperating neighborhoods. When an agent

moves into a neighborhood of cooperators, his probability of cooperation in the next round

goes up, this can spark a process of “cooperative tipping.” That is to say, because movement
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raises the probability that agent will cooperate (greater than the negative effect that the agent

will have on his neighbors’ PEF), the transition probabilities will change to favor moving to

a state with more cooperators.

Interestingly, there is a non-monotonic increase in the likelihood of cooperation as the

network size increases. For a small neighborhood size it is relatively easy for the agents

to coordinate on the all cooperate strategy (see the discussion of this effect in the discrete

neighborhood model below.) As the network size increases cooperation becomes more dif-

ficult in terms of number of agents who must coordinate on cooperation. But there is a

countervailing effect with regard to the network size. With a large network, the agents are

more closely aligned/connected across the entire population; a small pocket of cooperators

is able to expand their influence further throughout the network. Thus as the network size

grows cooperation becomes easier. In fact, when neighborhood size is 64 (32 neighbors on

each side), movement generates 100% cooperation.

Next, as a robustness check, we consider the movement effect over a range of payoff values

for C leaving the other payoff values unchanged. As C increases it becomes more beneficial

for an agent to defect and thus cooperation is more difficult to obtain. We report results for

8 and 16 neighbors in Tables 3 and 4. Again we see that allowing agents to move increases

the likelihood of attaining cooperation among agents as long as the payoffs are not too large;

if they are too large then no cooperation is possible, with or without movement.

C - Cheat Payoff No Movement Full Movement
3.50 0.59 0.97
3.75 0.34 0.79
4.00 0.07 0.37
4.25 0.02 0.00

Table 3: Effect of cheat payoff “C” on probability of cooperation - 8 neighbors.

Overall, the results of this subsection indicate that movement has the effect of substan-

tially increasing the likelihood of cooperative outcomes developing. Agents are able to avoid
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C - Cheat Payoff No Movement Full Movement
3.50 0.97 1.00
3.75 0.69 0.99
4.00 0.18 0.84
4.25 0.02 0.19

Table 4: Effect of cheat payoff “C” on probability of cooperation - 16 neighbors.

C - Cheat Payoff No Movement Full Movement
3.5 0.00 1.00
4.0 0.00 0.97
4.5 0.00 0.58
5.0 0.00 0.03

Table 5: Effect of cheat payoff “C” on probability of cooperation - lattice model, 8 surround-
ing neighbors.

defectors by opting to move to neighborhoods with higher levels of cooperation. Neighbor-

hood size has a nonmonotonic relationship with cooperations.

6.2 Lattice Based Neighborhoods

Next, we consider an agent network in the form of a 12× 12 lattice. Tables 5 and 6 present

the results. The first table shows outcomes when each agent’s neighborhood is a “Moore”

neighborhood, i.e., each agent has 8 surrounding neighbors.10 The second table presents the

results when the neighborhood consists of the 4 surrounding agents (i.e., up, down, left and

right). Again, we vary the cheat payoff and investigate the effect of agent movement on the

ability of agents to reach cooperative outcomes. As we can see from the tables, especially

when agents live within the 8-agent neighborhood, movement has a substantial impact on the

evolution of cooperation. However, neighborhood size makes a very strong contribution; with

the 4-agent neighborhoods, we can see that the range of cheat payoffs for which movement

matters is much smaller than in the Moore neighborhood case.

10The edges are not wrapped, so agents on the corners have fewer neighbors.
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C - Cheat Payoff No Movement Full Movement
3.01 0.00 0.12
3.05 0.00 0.11
3.10 0.00 0.10
3.20 0.00 0.04

Table 6: Effect of cheat payoff “C” on probability of cooperation - lattice model, with 4
surrounding neighbors.

As with the circle network, smaller neighborhoods diminish cooperation. Smaller neigh-

borhood sizes have two effects. One is that each agent’s PEF is, in some sense, more sensitive

to living with a defector, since there are fewer of them. Without movement, the asymptotic

probabilities from the Markov chain will always have a greater probability for defection;

and this probability will increase with smaller neighborhoods. In addition, with smaller

neighborhood sizes, there is less of an opportunity for pockets of cooperation to spread.

6.3 Discrete Neighborhood Model

Finally we consider a discrete neighborhood model. In this model, there are M distinct

neighborhoods, each withm locations. Each location in a given neighborhood is connected to

all other locations in the neighborhood, but there are no connections between neighborhoods.

This is a key feature of this model because if cooperation is able to develop in a given

neighborhood there is no mechanism that allows cooperation to spill over into the other

neighborhoods. This is distinct from the other models discussed above where a small group

of cooperating agents can expand outward into other neighborhoods which connect to them

either directly or indirectly through neighbors of neighbors.

In addition the effects of agents changing neighborhoods are very direct. An agent moving

into a neighborhood takes on a probability of cooperation that matches the other agents in

the neighborhood and also directly changes the probability of cooperation for all of the

agents in the neighborhood, but there are no indirect effects to other agents elsewhere in the
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population. In the other two models an agent moving into a neighborhood effects a set of

agents but this set is only partially connected to each other. For example if each agent on a

ring has two neighbors, one in each direction, the two neighbors only have one of their two

neighbors in common. In the discrete neighborhood model all neighbors have the same set

of neighbors in common (excepting that the agent is not a neighbor of himself) and no other

neighbors. Thus the discrete neighborhood model allows us to parse out some of the effects

of the other models listed above.

In these simulations we have 100 agents and 144 total locations (Mm = 144). We vary

the number of neighborhoods and size over different simulations. We find that cooperation

is more difficult to attain in this model than in the other two. Thus we selected payoffs such

that cooperation is easier to be attained. Specifically, we again choose A = 3.0 and B = 1.0

but set C and D to lower values (C = 3.1 or C = 3.05 and D = 1.1 or D = 1.05 depending

on the simulation run.) Thus the defector’s bonus is smaller than in the models discussed

above. Results for the discrete neighborhood model are shown in Tables 7 - 9.

There are two key results to take from these tables. The first is that movement decreases

the likelihood of attaining cooperation. There are two reasons why this occurs. If cooper-

ation results in a given neighborhood there is not mechanism which allows cooperation to

spread since the neighborhoods are disjoint from each other. Thus pockets of cooperation

that occur by chance cannot propagate into other regions of the population. In addition,

recall that the partial derivative of the PEF with respect to rivals cooperating is positive.

Thus when a defecting agent moves into a new neighborhood, her probability of cooperation

increases (recall that agents only improve payoffs by moving into neighborhoods with more

cooperators). But since she is moving from a neighborhood with fewer cooperators her effect

on everyone else in the new neighborhood is negative. In addition, each new neighbor will

have a lower probability of cooperation and will be playing with the other neighbors who

now each have a lower probability of cooperation. Thus each neighbor will be even less
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C D No Movement Full Movement
3.05 1.05 0.07 0.00
3.10 1.10 0.02 0.00

Table 7: Discrete Neighborhood Model - 8 Neighborhoods of size 18.

C D No Movement Full Movement
3.05 1.05 0.23 0.07
3.10 1.10 0.09 0.00

Table 8: Discrete Neighborhood Model - 12 Neighborhoods of size 12.

likely to cooperate in the future and a downward spiral can be created toward an all defect

outcome. In the other two models this spiral is less likely to occur because each neighbor

has other neighbors not affected by the new agent who anchor them nearer their current

probability of cooperation. These other neighbors mitigate the effects of a defector invading

and pulling down everyone’s probability of cooperation too far. Thus cooperation becomes

easier to obtain in the first two models.

A second key result is that it is easier to obtain cooperation when there are a large number

of neighborhoods and thus each neighborhood is small. This harkens back to the discussion

of the circle model where the smallest neighborhood sizes had high levels of cooperation.

Then, as the neighborhood size increased, cooperation first decreased and then increased

again. The eventual increase ties in with the mitigating effects of the additional neighbors

that were discussed in the previous paragraph. Having more agents helps to anchor regions

of cooperating agents to their strategies.

Finally, it is worth re-emphasizing that the PEF used in this paper only produces positive

movement effects in some network interaction structures. Thus the ability of movement to

produce cooperative outcomes is a function of both the behavioral rules that agents use in

playing the game as well as the interaction structure of the agents.
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C D No Movement Full Movement
3.05 1.05 0.31 0.21
3.10 1.10 0.20 0.07

Table 9: Discrete Neighborhood Model - 18 Neighborhoods of size 8.

6.4 General Discussion

As demonstrated in this paper, the ability of movement to aid cooperation is a function of

both the specific PEF as well as the network structure on which agents locate, and therefore

finding general sufficient or necessary conditions for the effect of movement on the attainment

of cooperation is probably not possible. However, below we sketch our ideas for some key

aspects of the ability of agents to improve the likelihood of cooperation with movement.

Here we demonstrate that if agents can move to open spaces on a network and can

choose their location based on a comparison of payoffs, then the nature of the PEF and the

agent network can determine whether agent movement increases or decreases propensities to

cooperate.11 Specifically, we offer that if the following properties hold, the ability of agents

to move will increase propensities to cooperate:

1. ∂π/∂ρ > 0. That is, the higher the cooperation rate of neighbors, the larger the profits

for an agent. This is true by definition for the Prisoner’s Dilemma. Agents must prefer

living with cooperators in order for movement to increase cooperation.

2. Agents can compare payoffs from play with current rivals versus play with a new set

of rivals. Agents must be able to make an intelligent decision as to where to locate if

given the opportunity to move. Thus there is a minimum bound on the intelligence of

agents needed for movement to be beneficial.

3. ∂pt+1/∂ρ > 0. Increasing cooperation by rivals will induce a higher probability of

cooperation the next round. This implies that holding constant the number of times

11We assume that there are no moving costs.
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an agent cooperates, ∂pt+1/∂ρ > 0 implies that ∂T (kt+1|kt) /∂ρ will be positive for

states kt+1 that have more cooperators. In addition cooperation is greatly enhanced

when a PEF has a strong imitative component. If agent’s don’t directly look at their

neighbors actions when updating their strategy, then it will move agents in the direction

of defecting more often.

4. The sum of the negative effect on the PEF of neighbors induced by an “invader” is

less than the positive effect from rival’s cooperation on the invader. As mentioned

above, each time an agent moves he lowers the probability of cooperation for the

agents to which he is newly connected. And, as these agents defect more often their

neighbors become more likely to defect more often. Calculating the sum of this effect is

difficult because the effect propagates to neighbors of neighbors, etc. Thus the network

structure needs to be able to cut off this cascade in an efficient manner so that the

negative sum is small compared to the positive effect on the invader from interacting

with cooperators. But the network structure also needs to allow cooperative behavior to

spread efficiently. Interestingly the lattice structure appears most efficient at balancing

these two effects. As we’ve seen above neighborhood size and neighborhood network

structure can make a difference. In the circle model, larger neighborhood sizes are

important, as is the case with the lattice model.

7 Conclusion

This paper has explored the effects of movement on the attainment of cooperation in a

spatial Prisoner’s Dilemma using both analytical techniques and agent-based simulations.

Movement has the potential to either allow cooperating agents to avoid defectors or to allow

defectors to invade cooperators. We provide a series of computational models that help to

explain when each result is likely to be obtained.
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First we show that when agents evolve their mixed-strategies based on their actions and

their rivals’ actions, these rules give rise to a Markov chain over all possible states of the

“cooperative system.” Next we focus on one particular probability evolution function (PEF),

with a strong imitation effect. This PEF has two absorbing states: all agents cooperate and

all agents defect. We then look at the evolution of cooperation in three network structures:

a circle, a lattice and discrete neighborhoods. We look at two sets of outcomes. The first set

is when agents do not move. The second set is when agents have the opportunity to move

to a new (randomly chosen) location based on a comparison of payoffs with their current

neighbors to the payoffs they would get if they moved into the new neighborhood.

The simulations show that network structure is an important determinant of the evolution

of cooperation and that network structure can affect whether agent movement improves or

worsens cooperation. In the circular network, we see that movement strictly increases cooper-

ation. Also we see that neighborhood size matters, with smaller and larger networks fostering

cooperation more than medium size neighborhoods. For the lattice networks, movement can

dramatically increase cooperation, especially when the neighborhood size is 8 rather than 4.

Larger neighborhoods are more effective at propagating cooperation. Finally, with the dis-

crete networks we see that movement decreases cooperation because there is no mechanism

to prevent the spread of defecting agents within a neighborhood.

This work has aimed to explore how the inclusion of “conscious” movement in an RPD

framework can affect the evolution of cooperation. While we have found some strong results

with our simulations, this work is a first attempt at looking at this relatively simple addition

to the RPD. Future work can explore this game using more analytical methods. In addition, it

would be interesting to see how agent heterogeneity—in terms of agents’ probability evolution

functions—affects the results of the game, with and without movement.
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