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Abstract

Phillips (1986) provides asymptotic theory for regressions that re-

late nonstationary time series including those integrated of order 1,

I(1). A practical implication of the literature on spurious regression

is that one cannot trust the usual confidence intervals. In the absence

of prior knowledge that two series are cointegrated, it is therefore

recommended that after carrying out unit root tests we work with

differenced or detrended series instead of original data in levels. We

propose a new alternative for obtaining confidence intervals based on

the Maximum Entropy bootstrap explained in Vinod and López-de-

Lacalle (2009). An extensive Monte Carlo simulation shows that our

proposal can provide more reliable conservative confidence intervals

than traditional, differencing and block bootstrap (BB) intervals.
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1 Introduction

We discuss a Monte Carlo simulation of a new solution to Granger and New-

bold’s spurious regression problem by using confidence intervals based on the

Maximum Entropy bootstrap (meboot) explained with examples in Vinod

(2008), Vinod and López-de-Lacalle (2009) and Vinod (2010). Vinod (2006)

provides theoretical justification for meboot.

Before describing our new solution to spurious regression problem, let us

review the problem in the context of a simple bivariate regression:

yt = �0 + �1xt + �t, (1)

where the original variables in levels are (integrated) nonstationary random

walk series, (xt, yt) ∼ I(1). Ordinary least squares (OLS) coefficients are:

(�̂0, �̂1). If errors are serially correlated, �t = ��t−1 + �′t is an autoregressive

process of order 1, AR(1). One tests the null hypothesis that � = 0 by

the Durbin-Watson (DW) statistic. Granger and Newbold define spurious

regression as occurring when R2 > DW .

Some authors including Hamilton (1994) define spurious regression more

narrowly as occuring when �t is nonstationary, such as when � = 1, making

it a random walk. Then OLS point estimates are inconsistent. Using the

narrow view, Hamilton explains the asymptotic theory of spurious regression

from Phillips (1986), whereby the sampling distributions of OLS coefficients

are non-standard. Hence the usual Student’s t tests and confidence intervals

(CI) are unreliable. If �t ∼ I(0), the OLS point estimates are known to be

‘super consistent,’ converging at the rate T instead of the usual
√
T as the

sample size T → ∞. Then, one should retain the OLS point estimates and

seek improved confidence intervals.

The narrow view can be misleading if a practitioner uses unit root test

rejecting the null hypothesis � = 1, to conclude that spurious regression

problem is absent and relies on 95% CI based on Student’s t. Our simulation

reveals that coverage probabilities for OLS are much lower than 0.95.

Hamilton (1994) lists three ‘cures’ denoted here by (c1) to (c3) to the
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spurious regression problem: (c1) Include yt−1 and xt−1 as additional regres-

sors. Along similar lines Stock and Watson (1993) suggest ‘dynamic’ OLS,

where several additional regressors involve leads and lags of first differences:

Δyt,Δxt. (c2) Difference the data before estimation. (c3) Following Blough

(1992) estimate (1) by generalized least squares (GLS) after Cochrane-Orcutt

correction for AR(1) errors.

We refer to (c2) as ‘OLSdiff’ model defined by:

Δyt = �0 + �1Δxt + �t, (2)

If OLSdiff is derived from (1), we have the special case where (�t = �t− �t−1)
and �0 = 0. Differencing strategy is subject to at least four drawbacks:

(d1) If �t are iid, the differencing transformation makes �t follow a moving

average process.

(d2) Efficiency of OLS is reduced because of induced MA errors, and also

because of a reduction in the overall variability in the differenced data.

(d3) Original subject matter specification is destroyed and there is a possibil-

ity of misspecification, Hamilton (1994). Although Nelson and Plosser

(1982) claimed that most macro economic series are differece station-

ary, this issue is far from settled. If the series are ‘trend stationary,’

rather than ‘difference stationary, differencing will lead to misspecifica-

tion. Standard inference on the slope and intercept can be distinct for

the two types.

(d4) If the series is subject to structural change or other shifts, differencing

across these changes may not be appropriate.

Subject to the above drawbacks, our simulation confirms the result that

differencing vastly improves the coverage of the true parameter �1 when OLS

is used to estimate (2).

Statistical relations are generally based on some subject matter theoret-

ical propositions. For example, economic theory might postulate a relation
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(1) among levels of inflation and unemployment variables. Now, (2) may not

be equivalent to (1) in all cases. When there are other variables present, the

differencing of all variables might stretch the economic interpretation more

than an economist can accept. Thus the cures (c1) and (c2) changing the

specification (1) might be problematic. This paper suggests a fourth cure

which does not change the specification, but uses meboot in conjunction

with a unit root test on residuals �̂t. Sections 2 and 3 describe our extensive

Monte Carlo simulations.

If �t ∼ I(0), we suggest using meboot on OLS. If �t ∼ I(1), we suggest

using the meboot on Cochrane-Orcutt type GLS as explained in subsection

2.2. The following subsection provides an introduction to the main ideas of

the meboot algorithm.

1.1 Introduction to the meboot algorithm

Normal theory inference assumes that the observed statistic such as a sam-

ple mean x̄ (invariant to reordering of xt) is one realization from an in-

finitely large normal population. By analogy, time series inference developed

in 1930’s by Wiener, Kolmogorov and Khintchine (WKK), among others,

imagined an infinite ensemble Ω as a population of stationary (I(0)) time

series with the observed series xt as its element. If the lag operator is de-

fined as Lxt = xt−1, the analogy with normal theory inference is facilitated

if the time series is invariant with respect to lag shifts of any order. WKK

refined the invariance ideas in a stationary time series model which satisfies

the ergodic theorem (time averages equal ensemble averages), before the era

of modern computers.

Unfortunately, converting a typical short time series in social sciences,

xt, to satisfy the covariance stationary model is inconvenient and sometimes

destroys the original specification. Vinod (2006) bypasses the WKK model

by using a computer algorithm to create an approximation to the large Ω

ensemble itself. This paper enhances that work with a detailed Monte Carlo

simulation.

4



Note that traditional independent and identically distributed (iid) boot-

strap directly shuffles individual data points with replacement to create a

large number J = 999, say of resamples. Since the iid bootstrap fails for m-

dependent time series data, one must use the block bootstrap (BB) explained

by various authors including Davison and Hinkley (1997), Liu (1988), and

Lahiri (2003). Since m-dependent means that roughly speaking blocks of size

m are independent, BB shuffles blocks of data.

The meboot provides a new alternative to BB, applicable to possibly

nonstationary time series xt, t == 1, . . . , T . The seven steps of the meboot

algorithm are explained in Vinod and López-de-Lacalle (2009). Vinod (2010)

views the algorithm with a slightly new angle, in terms of two-way mappings

based on simultaneous sorting of two columns of a matrix from the time

domain (t-dom) and numerical magnitudes or ‘values’ domain (v-dom) and

back.

The first step of the algorithm sorts a matrix with the first column con-

taining t = 1, . . . , T and second column containing xt to obtain the usual

order statistics x(t) in the second column, while remembering the first column

of sorted t subscripts. This is a one-one onto bijection mapping: (t-dom)→
(v-dom). Lemma 2 in Vinod (2010) shows that the map is linear, being

represented by a matrix multiplication.

Unlike iid or BB, meboot admits resample values from a small neighbor-

hood of x(t) in the (v-dom). Vinod and López-de-Lacalle (2009) use a simple

example of five observations: xt = (4, 12, 36, 20, 8), to illustrate these neigh-

borhoods using averages of adjacent order statistics: x(t) = (4, 8, 12, 20, 36).

The maximum entropy (ME) principle is used to claim that the ME density

is ‘uniform.’ For the simple example, the ME density is shown to consist

of five half open uniform density intervals: U(−11, 6] ∗ U(6, 10] ∗ U(10, 16] ∗
U(16, 28] ∗ U(28, 51], illustrated in Figure 1.

The meboot algorithm further requires the ME density to satisfy two

constraints: 1) Mass-preserving: On average, a fraction 1/T of the mass

of the probability distribution must lie in each small interval. 2) Mean-
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Figure 1: Toy ME density for xt = (4, 12, 36, 20, 8)
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preserving: This constraint numerically ensures that the time average equals

the ensemble average.

The algorithm goes on to construct a cumulative ME density based on a

density similar to the one in Figure 1 in the (v-dom). Now, one independently

selects a large number (J = 999, say) of resamples from the ME density, just

like the iid bootstrap selecting a large number of resamples from the empirical

cumulative density function (ECDF) defined from xt in the (t-dom).

Finally, the algorithm maps all iid resamples from (v-dom) to (t-dom)

by using the sorted t subscripts of the first step in the first column and iid

resamples from the ME density in the second column. This is a simultaneous

sort of the matrix with a focus on the first column, which recovers the time

subscript, as it were. An important property of all resampled series: xt,j, j =

1, . . . , J is that Spearman’s rank correlation coefficient between the original

data xt and xt,j is always near unity. In future work it might be possible to

relax this by considering rolling windows over short time intervals. Koutris

et al. (2008) use the meboot algorithm with rolling windows to propose a
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new test for stationarity.

While meboot is relatively new and designed for strongly dependent, evo-

lutionary, nonstationary times series, BB is designed for mildly dependent

stationary series. Since one is curious to compare the performance of meboot

with BB, we include such a comparison in some Monte Carlo experiments.

Since BB is not really applicable to the nonstationary times series mainly

considered in this paper, we also include some fractionally integrated (long

memory) and autoregressive series for which BB is applicable in our com-

parisons. We still find that BB performs poorly, consistent with Spanos and

Kourtellos (2002).

2 Monte Carlo Simulation of Spurious

Regression

This section focuses on spurious regression (1) involving two series: (yt, xt) ∼
I(1), but �t ∼ I(0), implying that OLS remains super consistent. Let us first

choose T = 100 and create our simulated regressor data xt, t = 1, . . . T as

follows. It is well known that starting with normal random deviates x0t, a

cumulative sum: xt = Σt
j=1x0j, directly creates an I(1) series.

Our yt ∼ I(1) data are created by following a definition based on (1). We

define:

yt = 1 + 2xt + ut, (3)

where the assumed true coefficients are: �0 = 1 and �1 = 2, and ut are

simulated AR(1) series with various choices of the autoregressive parameter

� ∕= 0, such that our simulations satisfy R2 > DW , ensuring that we are

dealing with spurious regressions.

Noriega and Ventosa-Santaularia (2006) discuss asymptotic theory con-

firming the presence of spurious regression despite ‘breaks’ in the levels and

trends of the series. Since breaks in the data are shown to matter, even

asymptotically, our simulation will incorporate artificial breaks via impulse
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or step modifications to x0t before computing their cumulative sums. In a

handful of experiments we choose to modify x0t by impulse or step inputs, af-

ter computing their cumulative sums. Our conclusions (details not reported

for brevity) regarding coverage performance of meboot, OLS and BB are un-

changed even if the cumulative sum is computed before the impulse or step

modifications.

We modify initial standard normal deviates x0t as:

(a) No modifications.

(b) Impulse input modifications of three values of randomly chosen sizes

from the uniform density SIZi ∈ [U1, U2] at randomly chosen three

locations. Impulse modifications add SIZi only to the three values

where modification is suggested by the random choice mechanism.

(c) Step (up or down) input modifications of three values of randomly chosen

step sizes chosen from the uniform density SIZs ∈ [U1, U2] at randomly

chosen three locations. The step modifications add SIZs not only to

the three values where modification is suggested by the random choice

mechanism, but also to all larger (subsequent) values of j in the time

series x0j, j ∈ [t, T ].

It is convenient to refer to these modifications as (a) to (c) in our figures

and tables. Figure 2 where the original series xt is simply the sequence 0.1 to

10, with time t = 1, . . . , 100. Both the impulse and step input modifications

are of size -1 made at the location t = 40 only and displayed. It is not neces-

sary to display the line of type (a) with no modification. This figure should

clarify the distinction between our three modifications (a) to (c) described

above.

Random walk series of type (a) are illustrated by Figure 3. Impulse input

modified series of type (b) are illustrated by Figure 4. Step input modified

series of type (c) when the size shifts are all positive are illustrated by Figure

5, and those when the size shift can be negative are illustrated by Figure 6.

These figures show that our simulation is working with plausible time series.
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Figure 2: Typical modifications to artificial series xt = 0.1, 0.2, . . . , 10 at the

location t = 40 of size -1. The top figure has impulse modification of type

(b), and the bottom figure has step modification of type (c).

.

0 20 40 60 80 100

0
4

8

Time t

0 20 40 60 80 100

0
4

8

Time t

Figure 3: Typical time series for the random walk process.
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Figure 4: Typical time series for three impulse perturbations to random walk

at randomly chosen three time points of sizes -0.96, 1.87, and -0.94 ∈ [−1, 3]

respectively, indicated by added vertical axes.
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Now, we are ready to use the R package called ‘meboot’, Vinod and

López-de-Lacalle (2009) to construct J = 999 resamples of xt, yt series. Unit

root tests on resampled xt, yt series further confirm that they are I(1) despite

the impulse or step modifications, and hence remain subject to the spurious

regression problem.

Next, we regress yt on xt for each resample to yield J coefficient estimates

b∗j , j = 1, . . . J . Our simulation reports the following four types bootstrap

confidence intervals. Denote by b the statistic, by � the (generic) parameter,

by � the Type I error, and by (1− �) the confidence level.

pctile) Naive percentile method based on ordering b∗j , j = 1, . . . , J values

from the smallest to the largest as b∗(j), j = 1, . . . J . If J = 999, � = 0.05

(J+1)(�/2) = 25 and (J+1)(1−�/2) = 975. Hence the ‘pctile’ interval

is given by the order statistics: [b∗(25), b
∗
(975)].

bpctile) This interval improves upon the ‘pctile’ interval by working on a
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Figure 5: Typical time series for positive step perturbations to random walk

at randomly chosen three time points of sizes 1.01, 1.96 and 1.02 ∈ [1, 2]

respectively, indicated by added vertical axes.
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transformed scale to force the distribution of b∗ to be symmetric, with-

out knowing that transformation explicitly. See Davison and Hinkley

(1997) p. 202.

norm) The ‘norm’ interval uses a normal approximation to the distribution

of b based on bootstrap estimates b∗ of the bias and variance described

by Davison and Hinkley (1997) p. 14.

basic) The ‘basic’ interval uses the following basic notion to better approx-

imate the ‘norm’ interval. Instead of directly using b∗ to approximate

the unknown �, the observable deviations b∗ − b are likely to be better

at approximating the unknown deviations b − �. See Vinod (1993) p.

635 and Davison and Hinkley (1997) p. 28.

Our tables report four types of CI under the headings: ‘pctile,’ ‘bptile,’

‘norm’ and ‘basic’. Since the true value of the slope �1 = 2, its CI should
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Figure 6: Typical time series for negative step perturbations to random walk

at randomly chosen three time points of sizes 0.71, 0.04 and -0.38 ∈ [−1, 2]

respectively, indicated by added vertical axes.
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include (cover) the true value 2. Our experiments repeat the creation of CI

N = 500, 1000 times. Normal theory yields the CI for two estimators: (i)

OLS, (ii) OLSdiff (applying OLS to differenced data). We resample J =

999 times to construct CI for the two bootstrap estimators: (iii) BB and

(iv) meboot. If Nk, (k = i, ii, iii, iv), denotes the number of times the true

slope is included inside the CI proposed by the k-th method, its coverage

probability is (Nk/N). Note that when k = iii, iv we have ‘pctile,’ ‘bptile,’

‘norm’ and ‘basic’ distinct CI estimates and hence as many distinct coverage

probabilities in our tables. The simulation also includes non-stationary ut ∼
ARIMA(1, 1, 0) process making OLS estimate �̂1 inconsistent in a separate

subsection.

Recall that we modify initial xt by impulse or step defined above as (a) to

(c). These random modifications depend on a range of sizes and the AR(1)

parameter � used in the definitions of ut in (3). We use row names to identify
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individual experiments in terms of these choices in all our tables. In addition

to coverage probabilities, we report CI widths. Hence each experiment needs

two lines in our tables.

Table 1 has two panels, upper and lower. Batches of two lines refer to

a single experiment with N = 1000, 500 and T = 150, 100 in the upper and

lower panels, respectively. We find that using a larger sample size T = 150

and larger N = 1000 in the upper panel does not offer any great advantage,

while slowing the execution. Using R version 2.10.1 and meboot version

1.1-1 on a Dell Pentium 4 PC running at 2.9 Ghz, each simulation with

N = 500, T = 100 took about three hours to finish. The odd numbered lines

of Table 1 report coverage probabilities over the N evaluations of confidence

intervals, and all even numbered lines report corresponding 95% confidence

interval widths.

All tables describing the simulation experiments have three sets of columns.

The first set identifies the nature of experiment indicating the type (a) to (c)

of random walk modification including the limits U1, U2 within which the size

of the modification must lie and the � used to define the AR(1) regression

errors. The second set entitled OLS contains two columns for traditional

OLS intervals on levels and on differenced data (denoted as k = i, ii above).

Column headings ‘OLS’ and ‘OLSdiff’ in Table 1 contain results for mod-

els (1) and (2), respectively. Note that the CI widths for OLS are too low

in each experiment, while OLS coverage probabilities are generally far less

than 0.95. This confirms that spurious regression problem cannot be ignored,

even when �t ∼ I(0). By contrast, both the widths are large and coverage

probabilities are at least close to 0.95 for ‘OLSdiff’, based on OLS applied

to differenced data. This supports the current practice of differencing I(1)

series, except that differencing is subject to the drawbacks (d1) to (d4) listed

earlier.

The remaining column headings in Table 1 refer to the four ways of getting

the ‘meboot’ 95% confidence intervals as described above, whose (somewhat

unintuitive) headings are based on the R package ‘boot’, Canty and Ripley
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Table 1: Simulation results using ‘meboot’ with odd numbered lines having

coverage probabilities for �1 and even numbered lines having corresponding

95% confidence interval widths.
OLS meboot

Line �, [U1, U2] OLS OLSdiff pctile bpctile norm basic

1 0.5,[1, 3](c) 0.7640 0.9790 0.9990 0.9990 0.9980 1.0000

2 width(c) 0.0374 0.3025 0.3957 0.3971 0.3632 0.3971

3 0.5,[1, 3](b) 0.7680 0.9480 0.9910 0.9920 0.9900 0.9910

4 width(b) 0.0899 0.3734 0.2619 0.2629 0.2490 0.2629

5 0.6,[1, 3](c) 0.6720 0.9800 0.9960 0.9960 0.9940 0.9980

6 width(c) 0.0636 0.3656 0.4453 0.4468 0.4074 0.4468

7 0.5,[1, 3](c) 0.7480 0.9780 1.0000 1.0000 0.9960 0.9980

8 width(c) 0.0604 0.3775 0.4603 0.4619 0.4212 0.4619

9 0.5,[-1, 2](b) 0.7420 0.9780 0.9900 0.9900 0.9840 0.9860

10 width(b) 0.0927 0.4386 0.3797 0.3810 0.3497 0.3810

11 0.5,[-1, 2](b) 0.7280 0.9460 0.9740 0.9740 0.9680 0.9740

12 width(b) 0.1398 0.4699 0.3267 0.3279 0.3030 0.3279

13 0.1,(a) 0.9300 0.9660 1.0000 1.0000 1.0000 1.0000

14 width(a) 0.0950 0.5327 0.3461 0.3473 0.3192 0.3473

(a) random walk (RW), (b) impulse modified RW, (c) step modified RW.

(2009). Note that coverage probabilities all exceed 0.95 for all four bootstrap

intervals for all experiments in Table 1.

We conducted a similar experiment focusing on the intercept and the

ability of various methods to cover the true value 1 chosen in the simulation.

We find that differencing leads to poor coverage properties for the intercept.

In two experiments (four lines similar to those in Table 1) the coverage prob-

ability of the ‘OLSdiff’ column is zero. All one thousand intervals (in two

experiments of N = 500 each, created after omitting 5% or 50 out of 999 ex-

treme values) completely miss the true value 1 in our simulation. Since one
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is generally not interested in the intercept, we omit those results for brevity.

If the researcher happens to be interested in the intercept, the traditional

solution of differencing the data appears to be far worse than our meboot.

Table 13 will discuss coverage of the intercept �0 later.

Table 2 reports on a similar Monte Carlo experiment using the block boot-

strap (BB). We construct confidence intervals for typical spurious regression

problems where R2 > DW holds, using an analogous experimental design.

The block size is chosen to be 5 in the upper panel of Table 2. The BB liter-

ature makes it clear that it is not suitable for nonstationary data such as in

our nonstationary model. However, it is rather surprising that the coverage

probabilities are all zero for all simulations. In other words, in thousands of

tries, the BB intervals obtained after omitting 50 out of 999 realizations to

determine 95% confidence intervals, we could not cover the true slope value

of 2 even once. During the same experiments the OLS and differenced OLS

intervals did cover the value over 60 and 95% of times, respectively.

The lower panel of Table 2 reports the performance of BB bootstrap with

the block size 10. It might be possible to manipulate block sizes and other

choices to nudge the coverage probabilities to higher values. Yet it is clear

that the BB is not recommended for nonstationary data. This particular

simulation is admittedly unfair to the BB method, since we are applying it

to nonstationary data knowing fully well that BB is designed for m-dependent

stationary data. Following section will consider cases where one or more of

the regressors is stationary, while retaining the spurious regressions’ rule of

thumb: R2 > DW .

2.1 Effect of Changing Confidence Levels on Coverage

and Widths

The ME density approximates the population density of a population of time

series subject to the following limitations.

L1] The ME density in the (v-dom) is a patchwork of uniform densities il-

lustrated in Figure 1, which cannot become analogous to the familiar Normal
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density ∈ (−∞,∞) used for traditional inference.

L2] The ME density as implemented in the meboot package has endpoint

truncations.

L3] Theil and Laitinen (1980) prove that the variance of the ME density

is:

�2
ME = �2 − 1

4T

T−1∑
i=1

(xi+1 − xi)2 −
1

24T

T−1∑
i=2

(xi+1 − xi−1)2, (4)

where �2 denotes the variance of xt. Note that both terms involving summa-

tions in (4) are strictly positive and therefore the variance of the ME density

is smaller: �2
ME < �2.

These three limitations might be why Table 1 coverage probabilities are

all exceeding 0.95, when the nominal confidence level for bootstrap interval

computations is set at 0.95. This subsection explores choosing 0.85 or 0.80

as nominal confidence levels to achieve the desired 0.95 coverage probability.

Table 3 reports the results for the case where we set the confidence level

at 0.85. Table 4 has the confidence level set at 0.80. These Tables show that

it might be useful to modify the usual level from 0.95 to 0.80 or 0.85 to make

the coverage probability closer to the usual 95%.

Note that the widths reported along the even numbered lines in Table 3

are generally larger than the ones reported in Table 4. In these experiments

the confidence level was set at 0.85 and 0.80 only for the meboot case. The

confidence level was retained at 0.95 for the two OLS cases, since the OLS

inference does not use our ME density. Note that the direction of changes

in confidence interval widths along with coverage probabilities show that the

simulation is behaving as expected.

These experiments suggest that setting the nominal confidence level 0.80

for the ME density bootstrap algorithms gives the desired type I error of

� = 0.05. We conclude this subsection by noting that it is possible to choose

a suitable nominal confidence level for meboot intervals for achieving the

desired type I errors. However, since 95% CI coverges exceed 0.95, a practi-

tioner need not specify a lower confidence level unless the CI widths are too
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long.

2.2 Nonstationary errors and inconsistent OLS

Spurious regression can be narrowly defined in the sense that regression er-

rors are random walk or nonstationary with unbounded variance, Hamilton

(1994). In this case OLS estimation is inconsistent. Note that (�̂1 − �1)

equals a ratio whose numerator is: Num = (1/T )
∑T

t=1(xt− x̄t)�t, and whose

denominator is: Den = (1/T )
∑T

t=1(xt − x̄t)
2. Since both xt and �t have

stochastic trends or are random walks, the law of large numbers as well as

the central limit theorem fail, and the ratio converges to a random number

instead of converging to zero as T →∞.

This subsection simulates the ARIMA(1,1,0) errors case. Hence the dis-

cussion here is relevant only if � ∼ I(1) is confirmed by unit root tests on

regression residuals.

Note that Table 5 based on ARIMA(1,1,0) errors has a nominal 95% con-

fidence level setting for both meboot and OLS. Only when meboot coverage

probabilities exceed the 0.95 setting, we can say that meboot is working well

here for the nonstationary errors case. Note that the coverage probabilities

under ‘pctile’ (meboot naive bootstrap intervals) are (97, 93, 81, 76, 96)%

which are below 0.95 in majority of cases suggesting that meboot ‘pctile’

is not working well here. All other intervals are also not working very well

here. The performance of block bootstrap (BB) in this case is found to be

much worse than meboot with coverage probabilities all zero (detailed table

is omitted for brevity).

Note that Table 6 based on ARIMA(1,1,0) errors has 80% confidence

level only for meboot while keeping the level for OLS and differenced OLS

at the usual 95% level, similar to Table 4 of the previous subsection. Only

when meboot coverage probabilities exceed the 0.80 setting, we can say that

meboot is working well here for the nonstationary errors case. Note that the

coverage probabilities under ‘pctile’ (meboot naive bootstrap intervals) are

(89, 78, 57, 53, 80)% which are below 0.80 in majority of cases suggesting that
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meboot ‘pctile’ is not working well here. The ‘norm’ intervals are also not

working well here. But ‘bptile’ and ‘basic’ coverage probabilities exceeding

0.80 in all cases, except for line number 7, where it is 0.77 (perhaps close

enough to 0.8). We find that meboot is certainly an improvement over OLS

in levels and over block bootstrap, but not over differenced OLS. This means

that meboot is partly working, while it’s performance does leave something

to be desired in situations where OLS is used even when OLS is known to be

inconsistent.

Now consider a simulation where generalized least squares (GLS) is used

[recall Hamilton’s cure (c3) above] instead of OLS, without changing the

original specification. Following Blough (1992) we use of Cochrane-Orcutt

type correction for AR(1) errors even though actual regression errors (known

in our simulation) are ARIMA(1,1,0) not AR(1). It is of interest to know

whether a similar correction using a bi-diagonal matrix from page 425 of

Vinod (2008) helps here. Compared to the option of adding lagged variables,

an appeal of this cure to me is that it does not change economists’ original

specification. Using a more efficient GLS estimator, instead of OLS, allows

for nonspherical errors without changing the specification.

A simulation using the GLS is obviously more computer intensive, since

each estimate needs two steps. First step estimates the residuals and fits

an AR(1) model to the residuals to estimate �. Second step estimates the

GLS regression using the estimated AR(1) parameter. Table 7 shows that

meboot does work when AR(1) errors are corrected by using Cochrane-Orcutt

type GLS based on estimated AR(1) coefficient for residuals. The last two

columns for meboot entitled ‘norm’ and ‘basic’ report coverage probabilities

all exceeding 0.95. Perhaps, this is the first ever simulation of the Blough’s

suggestion which took about eleven hours to complete.

A simulation similar to Table 6 shows the following meboot coverage

probabilities: (Line 1: 0.70, 0.94, 1.00, 0.99), (Line 3: 0.65, 0.90, 0.97, 0.96),

(Line 5: 0.64, 0.88, 0.96, 0.96), (Line 7: 0.82, 0.99, 1.00, 1.00). It is clear that

except for naive pctile interval in the first column, all meboot intervals exceed
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the assigned value 0.80. This suggests that if inconsistency of OLS is present

due to nonstationary regression errors, Cochrane-Orcutt type correction for

AR(1) errors does help meboot intervals to become conservatively reliable.

That is, generalized least squares 80% (GLS) mebbot confidence intervals

(except pctile) also cover the true slope with probability exceeding 0.80.

3 Monte Carlo Simulation of Two Regressor

Models

Even though the theory of spurious regressions focuses on equations of type

(1), its practical impact goes far beyond models with only one regressor.

Hence, our simulations will be incomplete unless we consider a two regressor

model discussed in this section.

First, let us focus on the following spurious regression:

yt = �0 + �1xt + �2�t + �t, (5)

where the original variable xt in levels remains (integrated) nonstationary

series with modifications (a) to (c), as in the previous section, while including

an additional regressor for time �t = 1, . . . , T . The simulation will use an

equation similar to (3), yt = 1 + 2xt + 3�t + ut, with the AR(1) generated ut

as before and setting the true value �2 = 3. Since �t is also nonstationary,

the block bootstrap is not expected to work well here.

Table 8 considers the coverage for the main slope coefficient when the

second regressor as the time variable is present for the T = 100 case. The

coverage probabilities for all cases in the last four columns exceed 0.95, sug-

gesting that meboot remains conservatively reliable, except that the widths

are relatively large. It is interesting that OLS applied to differenced data

(popular in econometrics) has reasonable coverage in columns entitled “OLS-

diff”, although slightly less than 0.95 in some cases. By contrast, the OLS

on levels data in column entitled “OLS” cover only about (66, 76, 77, 92)%
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times respectively, far short of the 95% needed. Next we consider the same

situation as this Table, except with shorter time series with T = 50.

Table 9 considers the coverage for the main slope coefficient when the

second regressor as the time variable is present for the T = 50 case. The

coverage probabilities for all cases in the last four columns exceed 0.95, sug-

gesting that meboot remains conservatively reliable for the T = 50 case,

except that the widths are large. Of course, widths can be reduced by choos-

ing smaller confidence levels (< 0.95). However, OLS applied to differenced

data has reasonable coverage in the column entitled “OLSdiff”. The OLS on

levels data in column entitled “OLS” cover only about (69, 77, 79, 78, 92)%

times respectively, short of the 95% needed when T = 50. Next, let us con-

sider the case where we compute the coverage probabilities for the coefficient

of �t.

Table 10 considers the case when the focus is on the coverage for the

coefficient for the second regressor �t in (5) or the time variable. The coverage

probabilities for all cases in the last four columns exceed 0.95, suggesting that

the meboot remains conservative and reliable at the cost of larger widths.

Note that OLS applied to differenced data has zero coverage in the column

entitled “OLSdiff”. This suggests that these OLS confidence intervals do

not cover the true value of 3 almost at all. Again, as before, the OLS on

levels data in column entitled “OLS” cover only about (66, 76, 75, 93)%

times respectively, far short of the 95% needed. Thus OLS inference remains

unreliable for the model (5), an extension of (1).

Next, we focus on the following spurious regression:

yt = �0 + �1xt + �2�t + �t, (6)

where the original variable xt in levels remains (integrated) nonstationary

series with modifications (a) to (c), similar to those of the previous section

along with an additional regressor �t ∼ FI(d = 0.4), a fractionally integrated

long memory variable with the long memory parameter d = 0.4, implying

that it is stationary. Figure 7 is a typical plot for �t, where no trending is

visible.

20



Figure 7: Typical time series for long memory fractionally integrated �t ∼
FI(d = 0.4).
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Since �t is stationary, the block bootstrap may have a better chance to

work well for the model in (6).

Table 11 considers the coverage for the main slope coefficient when the

second regressor �t ∼ FI(d = 0.4) the fractionally integrated long memory

variable is present with T = 100. The coverage probabilities for all cases

in the last four columns exceed 0.95, suggesting that meboot remains con-

servatively reliable. Again, OLS applied to differenced data has reasonable

coverage in the column entitled “OLSdiff”, although it is a bit short of 0.95

along two rows. By contrast, the OLS on levels data in column entitled“OLS”

cover only about (71, 74, 76, 93)% times respectively, far short of the 95%

needed. It is of interest to know whether the performance of block bootstrap

improves when the regressor is stationary, although not m−dependent. We

use the shorter time series T = 50 to improve the chances for BB.

Table 12 considers the coverage for the main slope coefficient when the

second regressor �t ∼ FI(d = 0.4) is present for the T = 50 case. The
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coverage probabilities for all cases in the last four columns are far short

of 0.95 while using larger confidence interval widths. Hence, BB remains

unacceptable for the T = 50 case, even if the fractionally integrated regressor

is stationary. It is interesting that OLS applied to differenced data has good

coverage in the column entitled “OLSdiff”. By contrast, the OLS on levels

data in column entitled “OLS” cover only about (74, 79, 78, 76, 94)% times

respectively, short of the 95% needed when T = 50. Although coverage

probabilities for the slope �1 remain extremely low, they are a bit better

than the zeros found earlier.

What if we change the focus on the coverage probabilities for the inter-

cept? Table 13 considers the coverage for the intercept when the second

regressor ∼ FI(d = 0.4) is present for the T = 50 case. The coverage proba-

bilities for all cases in the last four columns are generally above 0.4, but far

short of 0.95, suggesting that BB remains unacceptable (perhaps not as bad

as Table 12 where the slope is the focus of interest) for the intercept in the

T = 50 case, even if the fractionally integrated regressor is stationary. The

slightly improved coverage is purchased at the cost of much wider BB inter-

vals. In the lower panel where we have forced the first regressor xt of (6) is

stationary from a simulated AR(1) model having � = 0.5, 0.1 autoregressive

parameters, respectively. Thus BB is seen to be unsatisfactory for models

having one variable long memory �t and the other variable stationary AR(1)

with the autoregressive parameter ∣�∣ < 1.

Now, OLS applied to differenced data has zero coverage in the column

entitled “OLSdiff” in the upper panel but good coverage in the lower panel.

By contrast, the OLS on levels data in column entitled “OLS” cover only

about (74, 77, 79, 80, 94)% times in the upper panel and (79, 93)% in the

lower panel, still short of the 95% needed.
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4 Summary and Final Remarks

Since the block bootstrap assumes stationary data, the absence of a bootstrap

for state-dependent nonstationary data has been a long standing gap, only

recently filled by the Maximum Entropy bootstrap (meboot) described in

Vinod (2006). This paper begins with a short introduction to the ME density

and the meboot algorithm.

More important, this paper reports several Monte Carlo experiments

where the regressor xt is constructed as a random walk series with and with-

out random impulse or step contaminations of random sizes at randomly

chosen three points for sample sizes T = 50, 100. Our graphs reveal that

all series in our experiments are plausible as data series. The simulated yt

equals 1 + 2xt + 3zt + ut, where zt is mostly absent till Section 3, where it is

either time itself or a long-memory (fractionally integrated) series.

The simulation mostly focuses on the known slope (=2) of xt and its

confidence intervals (CI) estimated by four methods. Normal theory yields

the CI for two estimators: (i) OLS, (ii) OLSdiff (applying OLS to differenced

data). We resample J = 999 times to construct CI for the two bootstrap

estimators: (iii) BB and (iv) meboot. If Nk, (k = i, ii, iii, iv), denotes the

number of times the true slope is included inside the CI proposed by the

k-th method, its coverage probability is (Nk/N), by considering N = 500

experiments.

A practitioner may define spurious regression problems by the rule of

thumb: R2 > DW . However, it is important to distinguish between two

cases. First, when residuals ut (used in creating yt) are stationary, then OLS

is consistent. Second, when ut ∼ ARIMA(1, 1, 0), or otherwise nonstation-

ary, then OLS is inconsistent. Using unit root testing, it is a simple matter

to assess whether regression residuals are stationary or not.

Our extensive Monte Carlo simulations, within the limitations of any

simulation, suggest that meboot confidence intervals are reliable, and can

be generally recommended when OLS is consistent. They outperform the

competition and have the advantage that one need not change the original
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specification (in levels). If OLS is inconsistent due to nonstationary errors,

the performance of meboot remains good, (always superior to OLS and BB

intervals) but not always superior to OLSdiff. Our Section 1 lists four draw-

backs of OLSdiff.

We include (perhaps a first ever) simulatoin of Blough’s suggestion (cited

by Hamilton (1994)) to solve spurious regression by using GLS based on

Cochrane-Orcutt type correction for AR(1) regression errors. The simulation

suggests that meboot applied to GLS can be recommended.

The advantage of meboot over other methods for dealing with spurious

regression in the literature is that the original economic specification need

not be changed, even when GLS is used. Thus, we can begin to free the

researcher from always having to use differencing when the available data

have near unit roots or other forms of nonstationarity such as long memory.

In the modern era of computers we are not bound by the onerous requirement

of the 1930’s WKK model for time series inference, sometimes forcing us to

transform all our series into stationary series.
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Table 2: BB simulation Results, odd numbered lines having coverage proba-

bilities for �1 and even numbered lines having corresponding 95% confidence

interval widths. Upper and Lower panels have block sizes 5, 10.

OLS Block Bootstrap

Line �, [U1, U2] OLS OLSdiff pctile bpctile norm basic

1 0.6,[1, 3](c) 0.69 0.96 0.00 0.00 0.00 0.00

2 width(c) 0.06 0.36 1.63 1.63 1.62 1.63

3 0.5,[1, 3](c) 0.76 0.96 0.00 0.00 0.00 0.00

4 width(c) 0.09 0.44 1.62 1.63 1.62 1.63

5 0.6,[-1, 2](c) 0.69 0.96 0.00 0.00 0.00 0.00

6 width(c) 0.06 0.36 1.63 1.63 1.62 1.63

7 0.5,[-1, 2](b) 0.77 0.95 0.00 0.00 0.00 0.00

8 width(b) 0.14 0.47 1.59 1.60 1.60 1.60

9 0.5,[-1, 2](b) 0.77 0.95 0.00 0.00 0.00 0.00

10 width(b) 0.14 0.47 1.59 1.60 1.60 1.60

11 0.1,(a) 0.91 0.95 0.00 0.00 0.00 0.00

12 width(a) 0.12 0.55 1.58 1.58 1.58 1.58

1 0.5,[-1, 2](b) 0.80 0.98 0.00 0.00 0.00 0.00

2 width(b) 0.14 0.47 2.04 2.04 2.04 2.04

3 0.5,[-1, 2](b) 0.80 0.98 0.00 0.00 0.00 0.00

4 width(b) 0.14 0.47 2.04 2.04 2.04 2.04

5 0.1,(a) 0.94 0.95 0.00 0.00 0.00 0.00

6 width(a) 0.12 0.55 2.01 2.01 2.01 2.01

(a) random walk (RW), (b) impulse modified RW, (c) step modified RW.
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Table 3: Meboot simulation, odd numbered lines having coverage probabili-

ties for the second slope �2, and even numbered lines having corresponding

85% confidence interval widths. T=100.
OLS meboot

Line �, [U1, U2] OLS OLSdiff pctile bpctile norm basic

1 0.6,[1, 3](c) 0.6720 0.9800 0.9780 0.9780 0.9600 0.9600

2 width(c) 0.0636 0.3656 0.2965 0.2971 0.2992 0.2971

3 0.5,[-1, 2](c) 0.7420 0.9780 0.9400 0.9400 0.9640 0.9520

4 width(c) 0.0927 0.4386 0.2521 0.2525 0.2568 0.2525

5 0.5,[-1, 2](b) 0.7280 0.9460 0.8740 0.8760 0.8960 0.8740

6 width(b) 0.1410 0.4674 0.2154 0.2158 0.2230 0.2158

7 0.5,(a) 0.7380 0.9680 0.9020 0.9040 0.8940 0.8760

8 width(a) 0.1398 0.4699 0.2158 0.2162 0.2225 0.2162

9 0.1,(a) 0.9320 0.9540 0.9800 0.9800 0.9900 0.9840

10 width(a) 0.1228 0.5444 0.2156 0.2160 0.2225 0.2160

(a) random walk (RW), (b) impulse modified RW, (c) step modified RW.
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Table 4: Meboot simulation, odd numbered lines having coverage probabili-

ties for the second slope �2, and even numbered lines having corresponding

80% confidence interval widths. T=100.
OLS meboot

Line �, [U1, U2] OLS OLSdiff pctile bpctile norm basic

1 0.6,[1, 3](c) 0.6720 0.9800 0.9620 0.9620 0.9480 0.9380

2 width(c) 0.0636 0.3656 0.2522 0.2526 0.2664 0.2526

3 0.5,[-1, 2](c) 0.7420 0.9780 0.9080 0.9080 0.9420 0.9280

4 width(c) 0.0927 0.4386 0.2148 0.2152 0.2286 0.2152

5 0.5,[-1, 2](b) 0.7280 0.9460 0.8200 0.8220 0.8640 0.8320

6 width(b) 0.1410 0.4674 0.1845 0.1848 0.1985 0.1848

7 0.5,(a) 0.7380 0.9680 0.8420 0.8440 0.8500 0.8200

8 width(a) 0.1398 0.4699 0.1845 0.1847 0.1981 0.1847

9 0.1,(a) 0.9320 0.9540 0.9580 0.9580 0.9800 0.9760

10 width(a) 0.1228 0.5444 0.1842 0.1845 0.1980 0.1845

(a) random walk (RW), (b) impulse modified RW, (c) step modified RW.
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Table 5: Meboot simulation, odd numbered lines having coverage probabili-

ties for the second slope �2, and even numbered lines having corresponding

95% confidence interval widths. T=100. ARIMA(1,1,0) nonstationary errors.

OLS meboot

Line �, [U1, U2] OLS OLSdiff pctile bpctile norm basic

1 0.6,[1, 3](c) 0.1400 0.8300 0.9650 0.9650 0.9650 0.9750

2 width(c) 0.0403 0.0391 0.4540 0.4555 0.4156 0.4555

3 0.5,[-1, 2](c) 0.2400 0.9000 0.9300 0.9300 0.9050 0.9150

4 width(c) 0.0474 0.0436 0.3637 0.3649 0.3345 0.3649

5 0.5,[-1, 2](b) 0.2600 0.9400 0.8100 0.8100 0.7750 0.7850

6 width(b) 0.0785 0.0462 0.3161 0.3173 0.2934 0.3173

7 0.5,(a) 0.2050 0.9400 0.7550 0.7550 0.7300 0.7500

8 width(a) 0.0750 0.0457 0.3228 0.3240 0.2989 0.3240

9 0.1,(a) 0.2550 0.9500 0.9600 0.9600 0.9500 0.9550

10 width(a) 0.0445 0.0401 0.3172 0.3184 0.2949 0.3184

(a) random walk (RW), (b) impulse modified RW, (c) step modified RW.

30



Table 6: Meboot simulation, odd numbered lines having coverage probabili-

ties for the second slope �2, and even numbered lines having corresponding

80% confidence interval widths. T=100. ARIMA(1,1,0) nonstationary errors.

OLS meboot

Line �, [U1, U2] OLS OLSdiff pctile bpctile norm basic

1 0.6,[1, 3](c) 0.1700 0.8420 0.8920 0.9560 0.9620 0.9660

2 width(c) 0.0404 0.0393 0.2588 0.4565 0.4167 0.4565

3 0.5,[-1, 2](c) 0.2180 0.9000 0.7800 0.9380 0.9120 0.9200

4 width(c) 0.0483 0.0433 0.2102 0.3742 0.3430 0.3742

5 0.5,[-1, 2](b) 0.2420 0.9280 0.5660 0.8260 0.7900 0.8080

6 width(b) 0.0742 0.0458 0.1811 0.3214 0.2971 0.3214

7 0.5,(a) 0.1960 0.9500 0.5340 0.7740 0.7440 0.7680

8 width(a) 0.0770 0.0461 0.1829 0.3249 0.3002 0.3249

9 0.1,(a) 0.2560 0.9540 0.7980 0.9420 0.9360 0.9420

10 width(a) 0.0451 0.0403 0.1821 0.3237 0.2993 0.3237

(a) random walk (RW), (b) impulse modified RW, (c) step modified RW.
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Table 7: Meboot simulation, odd numbered lines having coverage probabili-

ties for the second slope �2, and even numbered lines having corresponding

95% confidence interval widths. T=100. ARIMA(1,1,0) nonstationary errors

corrected with GLS based on estimated AR(1).

OLS meboot

Line �, [U1, U2] OLS OLSdiff pctile bpctile norm basic

3 0.5,[-1, 2](c) 0.2840 0.9560 0.9420 0.9420 0.9960 0.9920

4 width(c) 0.0800 0.0621 0.6727 0.6749 0.6455 0.6749

5 0.5,[-1, 2](b) 0.3140 0.9480 0.9000 0.9020 0.9680 0.9580

6 width(b) 0.1084 0.0655 0.5756 0.5777 0.5470 0.5777

7 0.5,(a) 0.2980 0.9460 0.8820 0.8820 0.9640 0.9640

8 width(a) 0.1108 0.0663 0.5851 0.5871 0.5550 0.5871

9 0.1,(a) 0.3560 0.9520 0.9860 0.9860 0.9980 0.9980

10 width(a) 0.0627 0.0589 0.5736 0.5757 0.5404 0.5757

(a) random walk (RW), (b) impulse modified RW, (c) step modified RW.

Table 8: Meboot simulation, odd numbered lines having coverage probabili-

ties for the second slope �2, and even numbered lines having corresponding

95% confidence interval widths. Time �t is second regressor, T=100.

OLS meboot

Line �, [U1, U2] OLS OLSdiff pctile bpctile norm basic

1 0.6,[1, 3](c) 0.6620 0.9580 1.0000 1.0000 1.0000 1.0000

2 width(c) 0.0880 0.4063 2.7837 2.7915 2.7831 2.7915

3 0.5,[-1, 2](c) 0.7620 0.9480 1.0000 1.0000 1.0000 1.0000

4 width(c) 0.1372 0.4545 3.9282 3.9394 3.9193 3.9394

5 0.5,[-1, 2](b) 0.7720 0.9480 1.0000 1.0000 1.0000 1.0000

6 width(b) 0.1976 0.4744 4.9447 4.9583 4.9373 4.9583

7 0.1,(a) 0.9220 0.9300 1.0000 1.0000 1.0000 1.0000

8 width(a) 0.1725 0.5508 4.8640 4.8780 4.8510 4.8780

(a) random walk (RW), (b) impulse modified RW, (c) step modified RW.

32



Table 9: Meboot simulation, odd numbered lines having coverage probabil-

ities for �1 and even numbered lines having corresponding 95% confidence

interval widths. Time �t as second regressor, T=50.

OLS meboot

Line �, [U1, U2] OLS OLSdiff pctile bpctile norm basic

1 0.6,[1, 3](c) 0.6940 0.9800 1.0000 1.0000 1.0000 1.0000

2 width(c) 0.1959 0.5962 3.2411 3.2501 3.2412 3.2501

3 0.5,[-1, 2](c) 0.7740 0.9420 1.0000 1.0000 1.0000 1.0000

4 width(c) 0.3036 0.6865 4.1685 4.1809 4.1514 4.1809

5 0.5,[-1, 2](b) 0.7880 0.9380 1.0000 1.0000 0.9960 0.9960

6 width(b) 0.3788 0.6962 4.7206 4.7336 4.6935 4.7336

7 0.5,(a) 0.7800 0.9460 1.0000 1.0000 0.9960 0.9960

8 width(a) 0.3785 0.6989 4.7435 4.7554 4.7309 4.7554

9 0.1,(a) 0.9180 0.9580 0.9960 0.9960 1.0000 1.0000

10 width(a) 0.3610 0.8202 4.7178 4.7306 4.6920 4.7306

(a) random walk (RW), (b) impulse modified RW, (c) step modified RW.
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Table 10: Meboot simulation, odd numbered lines having coverage probabil-

ities for �2 coefficient of �t or time and even numbered lines having corre-

sponding 95% confidence interval widths.

OLS meboot

Line �, [U1, U2] OLS OLSdiff pctile bpctile norm basic

1 0.6,[1, 3](c) 0.6600 0.0000 0.9920 0.9920 1.0000 0.9980

2 width(c) 0.0308 0.0177 1.4048 1.4086 1.3991 1.4086

3 0.5,[-1, 2](c) 0.7620 0.0000 1.0000 1.0000 1.0000 0.9980

4 width(c) 0.0269 0.0168 0.8271 0.8294 0.8226 0.8294

5 0.5,[-1, 2](b) 0.7480 0.0000 1.0000 1.0000 1.0000 0.9920

6 width(b) 0.0245 0.0164 0.5070 0.5085 0.5025 0.5085

7 0.1,(a) 0.9260 0.0000 0.9960 0.9960 1.0000 0.9980

8 width(a) 0.0211 0.0190 0.4911 0.4925 0.4866 0.4925

(a) random walk (RW), (b) impulse modified RW, (c) step modified RW.

Table 11: Meboot simulation, odd numbered lines having coverage probabil-

ities for �2 and even numbered lines having corresponding 95% confidence

interval widths. Second regressor �t ∼ FI(d = 0.4).

OLS meboot

Line �, [U1, U2] OLS OLSdiff pctile bpctile norm basic

1 0.6,[1, 3](c) 0.7060 0.9640 0.9940 0.9940 0.9900 0.9920

2 width(c) 0.0642 0.3623 0.4521 0.4536 0.4178 0.4536

3 0.5,[-1, 2](c) 0.7380 0.9440 0.9980 0.9980 0.9920 0.9960

4 width(c) 0.0952 0.4421 0.3952 0.3966 0.3678 0.3966

5 0.5,[-1, 2](b) 0.7560 0.9400 0.9860 0.9860 0.9820 0.9840

6 width(b) 0.1397 0.4646 0.3644 0.3656 0.3416 0.3656

7 0.1,(a) 0.9300 0.9560 1.0000 1.0000 1.0000 1.0000

8 width(a) 0.1224 0.5481 0.3636 0.3649 0.3417 0.3649

(a) random walk (RW), (b) impulse modified RW, (c) step modified RW.
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Table 12: BB simulation, odd numbered lines having coverage probabilities

for �1 and even numbered lines having corresponding 95% confidence interval

widths. Second regressor �t ∼ FI(d = 0.4), Block size 10, T = 50.

OLS Block Bootstrap

Line �, [U1, U2] OLS OLSdiff pctile bpctile norm basic

1 0.6,[1, 3](c) 0.7420 0.9720 0.0020 0.0020 0.0020 0.0020

2 width(c) 0.1504 0.5336 2.5862 2.5925 2.5920 2.5925

3 0.5,[-1, 2](c) 0.7860 0.9640 0.0100 0.0100 0.0180 0.0160

4 width(c) 0.2069 0.6399 2.6618 2.6682 2.6853 2.6682

5 0.5,[-1, 2](b) 0.7780 0.9560 0.0080 0.0080 0.0280 0.0280

6 width(b) 0.2761 0.6760 2.6911 2.6977 2.7235 2.6977

7 0.5,(a) 0.7620 0.9640 0.0160 0.0160 0.0320 0.0320

8 width(a) 0.2795 0.6831 2.6934 2.6996 2.7264 2.6996

9 0.1,(a) 0.9380 0.9660 0.0180 0.0180 0.0320 0.0280

10 width(a) 0.2659 0.8069 2.6721 2.6787 2.6965 2.6787

(a) random walk (RW), (b) impulse modified RW, (c) step modified RW.

35



Table 13: BB simulation, odd numbered lines having coverage probabilities

for the intercept �0 and even numbered lines having corresponding 95% confi-

dence interval widths. Second regressor∼ FI(d = 0.4), Block size 10, T = 50

Lower panel focuses on �1 with xt ∼ AR(1) having � = 0.5, 0.1 values.

OLS Block Bootstrap

Line �, [U1, U2] OLS OLSdiff pctile bpctile norm basic

1 0.6,[1, 3](c) 0.7360 0.0000 0.5440 0.5440 0.6520 0.5440

2 width(c) 1.1079 0.7112 29.9814 30.0486 31.0534 30.0486

3 0.5,[-1, 2](c) 0.7660 0.0000 0.4920 0.4920 0.5600 0.5080

4 width(c) 1.0817 0.6905 18.3226 18.3625 18.8602 18.3625

5 0.5,[-1, 2](b) 0.7860 0.0000 0.4500 0.4500 0.4840 0.4620

6 width(b) 1.1652 0.6690 12.8144 12.8424 13.2051 12.8424

7 0.5,(a) 0.7960 0.0000 0.4420 0.4420 0.4840 0.4640

8 width(a) 1.1722 0.6690 12.7379 12.7652 13.1309 12.7652

9 0.1,(a) 0.9420 0.0000 0.4720 0.4740 0.4920 0.4720

10 width(a) 1.0858 0.7835 12.2340 12.2599 12.6057 12.2599

11 xt ∼AR(0.5) 0.7940 0.9700 0.0180 0.0200 0.0340 0.0400

12 width 0.3710 0.6730 2.6125 2.6190 2.6366 2.6190

13 xt ∼AR(0.1) 0.9340 0.9480 0.0180 0.0180 0.0220 0.0220

14 width 0.3372 0.7777 2.6305 2.6371 2.6456 2.6371

(a) random walk (RW), (b) impulse modified RW, (c) step modified RW.
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