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Abstract

This paper considers estimation situations where identification, en-

dogeneity and non-spherical regression error problems are present. In-

stead of always using GMM despite weak instruments to solve the

endogeneity, it is possible to first check whether endogeneity is seri-

ous enough to cause inconsistency in the particular problem at hand.

We show how to use Maximum Entropy bootstrap (meboot) for non-

stationary time series data and check ‘convergence in probability’ and

‘almost sure convergence’ by evaluating the proportion of sample paths

straying outside error bounds as the sample size increases. The new

Keynesian Phillips curve (NKPC) ordinary least squares (OLS) esti-

mation for US data finds little endogeneity-induced inconsistency and

that GMM seems to worsen it. The potential ‘lack of identification’

problem is solved by replacing the traditional pivot which divides an

estimate by its standard error by the Godambe pivot, as explained in

Vinod (2008) and Vinod (2010), leading to superior confidence inter-

vals for deep parameters of the NKPC model.
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1 Introduction

This paper considers inference issues in models where endogeneity of regres-

sors is feared and non-spherical regression errors are present, in the context

of an important macroeconomic model which has become a workhorse for an-

alyzing monetary policy and fluctuations. Gaĺı and Gertler (1999) published

an important paper dealing with the micro foundations of the new Keyne-

sian Phillips curve (NKPC) where some fraction � of firms use a backward

looking rule-of-thumb when they set their prices. Their work has inspired

several papers cited in Kleibergen and Mavroeidis (2009), (hereafter“KM09”)

which is followed by several discussion papers in the same issue of the jour-

nal. KM09 focus on identification, testing and inference for NKPC within

the generalized method of moments (GMM) framework.

The inflation �t is measured by the deflator for quarterly US gross domes-

tic product (GDP) as a part of Federal Reserve Economic Data (FRED) for

(1947-2007) at http://research.stlouisfed.org/fred2. We use KM09

data for the regressor xt as a proxy for real marginal costs based on the share

of labor in the nonfarm business sector developed from the data published

by the Bureau of Labor Statistics.

If Et denotes expectation conditional on information at time t, the NKPC

model is given by:

�t = �xt + 
fEt(�t+1) + 
b�t−1 + ut. (1)

Economists are more interested in three deep parameters: � the discount

factor, � the probability that prices remain fixed, and � the fraction of back-

ward looking price setters in the economy. The deep parameters are related

to the parameters of (1) by the following nonlinear equations derived by Gaĺı

and Gertler (1999). They represent three equations in three unknowns, apart

from a definitional identity for A.
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A = � + � (1− � (1− �))

� = (1− �)(1− �)(1− � �)/A (2)


f = � �/A


b = �/A

We shall see that numerical estimates of the deep parameters �, � and �

can be obtained even though simple explicit expressions are unavailable. We

simply use the R Development Core Team (2008) package ‘rootSolve’ and a

suitable set of estimates of parameters {�, 
f , 
b} for the left sides.

It is customary to replace the Et(�t+1) in eq. (1) by �t+1− �t+1, where �t

denotes one-step ahead forecast error for inflation. Upon substitution in (1)

we merge the forecast error into the equation error and include an intercept

to yield the equation for estimation as:

�t = 
0 + �xt + 
f�t+1 + 
b�t−1 + �t, (3)

where the endogeneity problem arises from possible correlation of �t errors

with the regressors. Hence it is well known that ordinary least squares (OLS)

estimates 
̂0, �̂, 
̂f , 
̂b of the parameters in (3) might be inconsistent. Gaĺı and

Gertler (1999) and many others assume that 
0 = 0, that is force the line of

regression through the origin.

Econometrics texts including Vinod (2008) explain super-consistency of

OLS in the presence of nonstationary (integrated I(1) of order 1) variables

on two sides of the regression. However things become less neat when there

are I(d) regressors containing a range of d ∈ [0, 1], say, possibly fractional

values. Similarly, textbooks explain that OLS is inconsistent and might have

to be replaced by the GMM if regressors are correlated with regression errors

due to endogeneity. Unfortunately, actual sizes of such correlations and pos-

sible weakness of available GMM instruments remain unknown in given data.

Hence, one generally does not know if OLS is seriously flawed and must be

replaced by the GMM.
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This paper studies local functioning of OLS and GMM estimators in the

neighborhood of the available sample size n. Most economists would agree

that our quarterly data over the past 70-year period is finite but sufficiently

long. Although one can choose even longer data series to achieve better

asymptotics, underlying macroeconomic notions might become too stretched.

For example, the operational meaning of inflation variable (GDP deflator) to

economic agents cannot he assumed to be constant, while the quality and

content of the GDP change dramatically over time.

Assuming that OLS is inconsistent, Gaĺı and Gertler (1999), KM09,

among others, use GMM with potentially weak instrumental variables (up

to four lags of inflation, the labor income share, the output gap, the long-

short interest rate spread, wage inflation, and commodity price inflation) to

overcome the endogeneity problem. This paper suggests an evidence-driven

alternative.

Krugman (2009) argues that macro economists failed to predict the great

recession of 2008 and various bubbles in asset prices because they have been

“mistaking beauty for truth,” where the beauty refers to mathematical ele-

gance. Accordingly, this paper suggests a case-by-case computer intensive

evaluation of consistency of individual regression coefficients, undeterred by

the absence of beautiful asymptotic econometrics for models with mixtures

of potential problems.

Section 2 reviews some notions from the maximum entropy (ME) boot-

strap for time series and some tools in R for learning mathematical theory of

convergence concepts. We use these tools to approximately evaluate the con-

sistency of OLS estimates of (3). Section 3 contains our numerical example

along with the R code for NKPC and Section 4 contains Efficient Estimation

of NKPC Model. Section 5 considers estimation and confidence intervals for

the three deep parameters and Section 6 contains our final remarks.
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2 R packages called ‘meboot’ and

‘ConvergenceConcpets’

Efron’s bootstrap for independent and identically distributed (iid) data is

an established computer intensive tool. In the context of time series, it ap-

plies readily to stationary data. Singh (1981) pointed out the inadequacy of

iid bootstrap for stationary but dependent time series (m-dependent) data.

Liu (1988) and Lahiri (2003) study bootstrap for non-iid but stationary sit-

uations in detail. Vinod and López-de-Lacalle (2009) provide an R pack-

age called ‘meboot’ for implementing the maximum entropy bootstrap from

Vinod (2004) for strongly time-dependent non-stationary data.

Our NKPC of (3) potentially involves a mixture of nonstationary I(d)

series, where the order of integration d can be uncertain and perhaps even

fractional (long memory). Over the 70-year time period there may have been

inflation regime switching structural changes. In addition to avoiding station-

arity, ‘meboot’ package is designed to avoid the following three properties of

traditional iid bootstrap mentioned in Vinod (2004, 2006). In this section it

is convenient to let xt denote a generic variable for which bootstrap resamples

are needed.

• The traditional bootstrap sample obtained from shuffling with replace-

ment repeats some xt values while not using as many others. It never

admits nearby data values in a resample. We are considering applica-

tions where there is no reason to believe that values near the observed

xt are impossible. For example, 1967 GDP deflator during the first

quarter was 23.612, and we know that 23.6124 and 23.6119 round to

23.612. There is no justification for excluding all such nearby values.

• The traditional bootstrap resamples must lie in the closed interval

[min(xt),max(xt)]. Since the observed range is random, we cannot

rule out somewhat smaller or larger xt.

• The traditional bootstrap resample shuffles xt such that any depen-
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dence information in the time series sequence (x1, . . . , xt, xt+1, . . . , xT )

is lost in the shuffle. If we try to restore the original order to the shuffled

resample of the traditional bootstrap, we end up with essentially the

original set xt, except that some dropped xt values are replaced by the

repeats of adjacent values. Hence, it is impossible to generate a large

number J of sensibly distinct resamples with the traditional bootstrap

shuffle without admitting nearby values, which is what ‘meboot’ does.

Vinod and López-de-Lacalle (2009) explain the ‘meboot’ computer inten-

sive algorithm with examples and graphics. Given a time series xt, where

t = 1, 2, . . . T , the algorithm creates j = 1, 2, . . . J random resamples: xt,j.

Briefly, the steps are as follows.

1. Construct a matrix A with t = 1, . . . T in the first column and xt in the

second column. Now sort both columns simultaneously on the second

column to yield order statistics x(t) in the second column.

2. Compute a neighborhood of each x(t) as the interval [zt−1, zt], where

zt = (x(t) +x(t+1))/2 for t = 1, . . . , T −1 are called intermediate points.

We omit description of z0 and zT defining the neighborhoods of the first

and last order statistic for brevity. The ‘mass preserving constraint’

ensures that each neighborhood of the data point xt defined from these

intermediate points has probability 1/T of being selected in the sample.

This is similar to the iid boot.

3. Compute the mean of the maximum entropy density within each inter-

val such that the ‘mean-preserving constraint’ (designed to eventually

satisfy the ergodic theorem) is satisfied.

4. Generate random numbers from the [0, 1] uniform interval, compute

sample quantiles of the ME density at those points, sort them and

place them in the second column of the matrix A.
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5. This time, sort on the first column of A to create the sequence 1, 2, . . . T

while simultaneously sorting on the second column. The resulting val-

ues in the second column represent our ‘meboot’ j-th resample.

6. Repeat steps 3 to 5 J times (The algorithm default is J = 999).

Vinod (2010) views the double sorting algorithm as a mapping of xt series

to x(t) from the time domain to numerical magnitudes or values domain

(v-dom). When only the range of the random variable is known, and we

wish to be maximally non-committal about its functional form, maximum

entropy (ME) principle suggests the uniform density. In our context the ME

density is a patchwork of uniform densities residing in the v-dom defined over

small neighborhoods defined in Step 2 above. Joag-dev (1984) surveys the

literature on stochastic dependence and notes that dependence between two

random measurements X and Y is high when their order statistics match.

The algorithm matches the order statistics of each resample xt,j with the

order statistics x(t) of the original data. Various examples in Vinod and

López-de-Lacalle (2009) show that the algorithm is easy to use in practice.

The ‘meboot’ package allows us to create a large number (=J) of rein-

carnations of �t, xt variables which are indeed similar, but not too similar.

Their autocorrelation and partial autocorrelation functions (acf, pacf) are

also similar without using common parameters. See Vinod and López-de-

Lacalle (2009) for an illustration of plots of (original and resampled) airline

passenger series with acf, pacf and power spectra. The plots show that ‘me-

boot’ resamples are plausible representations of what might happen to the

series, despite the presence of shifting seasonalities and regime changes.

Statistical inference for time series assumes that the observed series is

one realization ! from the infinite dimensional ensemble ! ∈ Ω of all possible

series. The ‘meboot’ package provides a computer intensive approximation to

Ω. Khintchine’s “law of iterated logarithm” provides that assuming bounded

means and variance, iid distributions, paths of partial sum sequences can

fluctuate within a bound ±
√

[2�2nlog (log(n))], where n is sample size and

�2 is the variance.
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Now we review the R package called ‘ConvergenceConcepts,’ Lafaye de

Micheaux and Liquet (2009) (hereafter, CC) inteneded for learning asymp-

totic theory by allowing students to work with concrete examples. The CC

package directly studies similar paths of partial sum sequences (Xn,! −X!)

based on n observations as n→∞. We write convergence in probability for

sample size n as: Xn
p→ X whenever

∀� > 0 pn = P [!; ∣Xn,! −X!∣ > �]→ 0 as n→∞. (4)

The CC package explicitly evaluates pn as a relative frequency. It counts

the sample paths that wander outside the ±� bound among a large number

J(=999) of sample paths indexed by !.

Almost sure convergence means that the limit of Xn,! equals X! for all

paths as n→∞. The CC package also reports a similar relative frequency of

the count of the number of times that a k ≥ n exists such that ∣Xn,!−X!∣ >
�. The relative frequency provides an approximation to the probability an

for ‘almost sure’ convergence. More important, the CC package permits

us to approximately evaluate whether the relative frequencies satisfying the

inequality pn < an are individually decreasing as n increases, in the context

of a particular problem.

Consider a bootstrap approximation to a pivotal regression statistic, as-

sumed to be a smooth functional of the true unknown cumulative density,

conditioned on the available sample. Hall (1992) describes mathematical de-

tails of bootstrap convergence concepts. Using a generic notation, let our

pivotal statistic be bi denoting the ordinary least squares (OLS) estimate of

the i-th true unknown coefficient �i. The bootstrap resampling here “condi-

tions” on the observed sample to create J regression problems with bootstrap

estimates denoted by b∗i . The bootstrap is successful because the empirical

distribution function of b∗i−bi is often a good approximation to that of bi−�i.
In a simulation study, �i are known and we can directly study whether the

bootstrap b∗i converges to �i as n→∞, provided we can vary n over a range

of values, eliminating the middleman bi, as it were. Thus b∗i based on n ob-

servations play the role of Xn,! and �i play the role of X! in the notation of
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the CC package.

If one chooses � > 0 too large, then too many paths are likely to lie within

the ±� bound, making the probability of a path going outside the bounds

approach zero. Conversely, if � > 0 is too small, too many paths readily go

outside the bound making the probability of a path going outside the bounds

approach unity. Since we need to avoid both situations, a choice � = 0.01

for all coefficients does not work. Fortunately, the simulation allows us to

choose our � as �̄ = (∣b∗i − �i∣), where the average is over a large number of

simulated sample paths admitting various sample sizes. These �̄ values are

expected to be different for each regression coefficient.

The following section illustrates our use of these packages for the NKPC

example.

3 Numerical NKPC example

Now we check whether the coefficient estimates 
̂0, �̂, 
̂f , 
̂b of (3) converge

‘in probability’ and /or ‘almost surely.’ We run the OLS regressions with

and without the intercept. Since the intercept is statistically insignificant

it might be appropriate to force the line of regression through the origin.

However, the estimate of �̂ remains insignificant in both cases. Since the

NKPC specification requires us to retain � in the model, we have the option

to retain the intercept.

Table 1 reports our OLS results. The adjusted coefficient of determination

is: R2 = (0.6728, 0.8819) for the models with and without the intercept,

respectively. The p-values for the F tests for significance of overall models

are close to zero for both models.

Now we report the results based on the GMM estimated with and without

the intercept, and two choices of of instrumental variables. Notation ‘gmm2’

refers to the instrument choice �t−3, �t−4. Notation ‘gmm3’ refers to the

choice xt−3, xt−4. The GMM estimates from the R package ‘gmm,’ Chausse

(2009), yield exactly the same estimates as the OLS when the instrumen-
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Table 1: OLS regression results with intercept (upper panel) and without

intercept (lower panel) for the NKPC model of equation (3)

Parameter Estimate Std. Error t value Pr(>∣t∣)

0 7.4868 4.1674 1.80 0.0737

� 6.4049 9.3445 0.69 0.4938


f 0.4580 0.0497 9.21 0.0000


b 0.4453 0.0498 8.94 0.0000

� 8.9282 9.2824 0.96 0.3371


f 0.4857 0.0475 10.22 0.0000


b 0.4732 0.0475 9.95 0.0000

tal variables are absent, as they should. We use the ‘gmm’ package with

(wmatrix=“optimal”) for the weight matrix appearing in the GMM objective

function and with the ‘continuous updated GMM’

Table 2: GMM results with and without intercept for the NKPC model of

equation (3) where gmm2 has �t−3, �t−4 as instruments and where gmm3 has

xt−3, xt−4 as instruments

estimator 
̂0 �̂ 
̂f 
̂b

gmm2.with.intercept 15.2830 15.5568 0.4879 0.3632

gmm2.NO.intercept 8.1709 0.4739 0.4921

gmm3.with.intercept 8.1363 6.5145 0.4564 0.4423

gmm3.NO.intercept 8.8153 0.4844 0.4747

KM09 impose the restriction that 
f + 
b = 1. It appears that in Table 2

where no restriction is imposed, the sum of these coefficients is always a bit

less than unity.

The main motivation for using the GMM is to remove possible incon-

sistency of OLS induced by the endogeneity of regressors. Now we use a
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slightly improved version of ‘checkConv’ function in ‘meboot’ package to

approximately check the convergence of OLS in our current situation. A

modification is needed, since leads and lags of the dependent variable �t are

present on the right hand side of (3). The simulation needs to correctly use

these leads and lags.

There are N = 236 observations in the data set after omitting suitable

lagged values. We reserve the last 100 data points for the study of conver-

gence properties and let n reside range in the closed interval [137, 236] for

our 100 sample paths. Clearly, there is a separate path for each regression

coefficient with its own �̄ available in our simulation environment based on

average errors over these 100 estimates.

We use the CC package to evaluate the probabilities pn defined in equa-

tion (4) for ‘convergence in probability’ and a similar probability an for ‘al-

most sure convergence.’ We have 100 evaluations of pn, an as n increases in

the closed interval [137, 236]. Convergence means these probabilities should

decline as n increases, or (dpn/dn) < 0 and (dan/dn) < 0. We can approxi-

mately evaluate these derivatives by running two regressions of pn and an on

n. If we have consistency, these regressions should have statistically signifi-

cantly negative slopes, indicated by the p-vales of these slopes being ‘small’

(< 0.05) at the 5% level.

Table 3 reports an application of this method to our model (1) evaluat-

ing convergence of coefficients. This Table uses the simple linear regression

of probabilities pn and an on n, omitting the details such as values of the

estimated intercept in these regressions.

Table 3 reveals whether t-values in a regression of relative frequencies

of sample paths pn, an on sample sizes n of those paths are large enough

to indicate statistically significantly declining probabilities for the OLS es-

timator. All slopes are significantly negative, except for 
̂b, which remains

significantly negative at the 10 percent level. Although our very partial in-

formation about the functioning of the OLS estimator suggests slight doubt

with ‘convergence in probability,’ the evidence supporting convergence ‘al-
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Table 3: Table for convergence of OLS coefficients of NKPC model regressing

on n (without the n2 term)

(p/as).coef. Estimate Std. Error t value Pr(>∣t∣)
1 prob. 
̂0 -0.012947 0.000461 -28.080136 0

2 a.s. 
̂0 -0.01304 0.000452 -28.87482 0

3 prob. �̂ -0.014789 0.000756 -19.55699 0

4 a.s. �̂ -0.014867 0.000776 -19.157708 0

5 prob. 
̂f -0.001556 0.000141 -11.033583 0

6 a.s. 
̂f -0.004574 7.4e-05 -62.006419 0

7 prob. 
̂b -0.000188 0.000111 -1.696236 0.093016

8 a.s. 
̂b -0.003776 8.9e-05 -42.488981 0

most surely’ at the same 5% level seems to overcome it. After all, the almost

sure convergence implies convergence in probability.

Now we investigate what happens if try to refine these results by consid-

ering nonlinear regressions of pn and an on 1, n, n2, where 1 represents the in-

tercept. We let n ∈ [137, 236], as before. The results for convergence in prob-

ability are given in Table 4 with greater detail. Upon fitting the quadratic

we are interested in evaluating the derivative (dpn/dn) at n = N = 236, the

ending size of the data set, even though the evaluation of the derivative is

somewhat sensitive to where we evaluate it.

It is desirable for convergence that this rate of change in probability be

negative. The value of this derivative will be different for each of the four

coefficients of the NKPC model. Convergence of the estimate of each coeffi-

cient requires this derivative to be negative. The table reports fuller details

of the quadratic fit with all quadratic coefficient estimates, standard errors,

Student’s t values and p-values or Pr(> ∣t∣). We include three lines to report

results when pn is regressed on 1 (for the intercept), n and n2. The three

lines must be present for each of the four coefficients of the NKPC model.

It is convenient to report the derivative (dpn/dn) evaluated at n = N = 236
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along the middle line (see in Table 4 line seq. values 2, 5, 8 and 11). Note

that values at lines 8 and 11 are not negative, raising questions about the

convergence in probability for 
̂f and 
̂b.

The results for almost sure convergence in Table 5 report three lines for

each coefficients, with the middle line (see line seq. values 2, 5, 8 and 11)

showing evaluations of (dpn/dn) at N . Here all derivative evaluations are

negative suggesting almost sure convergence of the OLS estimator. This is

consistent with the result based on the regression of probabilities on n.

Table 4: Table for convergence in probability of OLS coefficients of NKPC

model regressing pn on 1 (intercept), n and n2, and (dpn)/dn at N

seq. ref. coef. Estimate Std. Error t value Pr(>∣t∣)
1 pn(
̂0) on1 3.39526 0.64116 5.29546 0.00000

2 at N:-0.01170, on n -0.01776 0.00684 -2.59685 0.01087

3 pn(
̂0) on n2 0.00001 0.00002 0.70512 0.48243

4 pn(�̂) on 1 1.64501 1.03965 1.58227 0.11684

5 at N:-0.01954, on n 0.00351 0.01109 0.31655 0.75227

6 pn(�̂) on n2 -0.00005 0.00003 -1.65405 0.10135

7 pn(
̂f ) on 1 2.30427 0.11018 20.91331 0.00000

8 at N:0.00288, on n -0.01862 0.00118 -15.84603 0.00000

9 pn(
̂f ) on n2 0.00004 0.00000 14.55520 0.00000

10 pn(
̂b) on 1 1.58740 0.10319 15.38351 0.00000

11 at N:0.00293, on n -0.01219 0.00110 -11.07737 0.00000

12 pn(
̂b) on n2 0.00003 0.00000 10.93194 0.00000

Table 5 is similar to Table 4 detailing a quadratic fit for an on 1, n and

n2. The middle rows report the derivatives evalueated at N for OLS. It is

interesting that all evaluations are negative, suggesting approximate ‘almost

sure’ convergence for OLS in Table 5.

Now we evaluate the convergence for the GMM estimator. As with the

OLS, we use the simulation to define the band so that the proportion of paths
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Table 5: Table for almost sure convergence of OLS coefficients of NKPC

model regressing an on 1 (intercept), n and n2, and (dan)/dn at N

seq. ref. coef. Estimate Std. Error t value Pr(>∣t∣)
1 an(
̂0) on 1 3.19808 0.62916 5.08306 0.00000

2 at N:-0.01243, on n -0.01540 0.00671 -2.29432 0.02393

3 an(
̂0) on n2 0.00001 0.00002 0.35193 0.72565

4 an(�̂) on 1 1.44589 1.06378 1.35920 0.17723

5 at N:-0.02024, on n 0.00579 0.01135 0.51070 0.61072

6 an(�̂) on n2 -0.00005 0.00003 -1.82526 0.07104

7 an(
̂f ) on 1 1.95663 0.09022 21.68648 0.00000

8 at N:-0.00323, on n -0.00974 0.00096 -10.12497 0.00000

9 an(
̂f ) on n2 0.00001 0.00000 5.38453 0.00000

10 an(
̂b) on 1 0.50946 0.08448 6.03052 0.00000

11 at N:-0.00624, on n 0.00572 0.00090 6.34899 0.00000

12 an(
̂b) on n2 -0.00002 0.00000 -10.56357 0.00000

going outside the band: ±�̄ is then numerically computed. A comparison of

�̄ values based on average errors in our simulation for the four coefficients

is found in Table 6. Note that the simulation error in the estimation of the

intercept are very large for GMM compared to OLS. By contrast the error

for �̂ are large for OLS compared to GMM. The intercept seems to affect

the magnitude of all errors. However, we use these suitably chosen distinct

�̄ values when we use the CC package for OLS or GMM. Of course, we want

the result to be true for all � values. Since this is not feasible in practice,

we have to choose some �̄ value such that the result would be true for all

∣�∣ > ∣�̄∣.
What about convergence of GMM? Again, we use lagged � and x as

instruments. The ‘true’ coefficient values are determined by initial GMM

estimates for the purpose of the simulation of sample paths.

Table 7 is similar to Table 3. A study of Table 7 reveals whether t-
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Table 6: A comparison of �̄ values based on average simulated errors

Type 
̂0 �̂ 
̂f 
̂b

OLS 2.87 11.52 0.005 0.004

GMM 231.76 1.17 0.25 0.56

Table 7: Table for convergence of GMM coefficients of NKPC model regress-

ing both pn and an on intercept and n

(p/as).coef.No Estimate Std. Error t value Pr(>∣t∣)
1 prob. 
̂0 0.004905 0.003673 1.335426 0.274019

2 a.s. 
̂0 -0.001401 0.000504 -2.781518 0.068904

3 prob. �̂ -0.009309 0.004999 -1.862112 0.159496

4 a.s. �̂ -0.009109 0.003807 -2.392804 0.096497

5 prob. 
̂f 0.002603 0.008074 0.322358 0.76834

6 a.s. 
̂f -0.013213 0.003861 -3.421941 0.041784

7 prob. 
̂b -0.053053 0.011335 -4.68044 0.018428

8 a.s. 
̂b -0.053053 0.011335 -4.68044 0.018428

values in a regression pn or an on n based on relative frequencies of sample

paths straying outside the bounds are large enough to indicate statistically

significantly declining probabilities for the GMM estimator. As before, Table

7 omits the details regarding the estimated intercept and reports only on the

slope coefficients for brevity. Since the p-values do exceed 0.05 along the first

five rows of the table with two values positive, the convergence of GMM is

more seriously in doubt compared to the convergence of OLS in our analogous

Table 3.

Table 8 for the GMM reports regression of pn on 1, n, n2 and derivatives

dan/dn at n = N (see line seq. values 2, 5, 8 and 11). Note that three

out of four positive derivatives (dpn/dn) suggest possibly serious problem of

divergence ‘in probability,’ for GMM compared to one in Table 4 for OLS.
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Table 8: Table for convergence in probability of GMM coefficients of NKPC

model regressing pn on 1 (intercept), n and n2, and (dpn)/dn at N

seq. ref. coef. Estimate Std. Error t value Pr(>∣t∣)
1 pn(
̂0) on 1 58.0595 203.9843 0.2846 0.8027

2 at N:0.0092, on n -0.4970 1.7435 -0.2851 0.8024

3 pn(
̂0) on n2 0.0011 0.0037 0.2879 0.8005

4 pn(�̂) on 1 382.3900 90.4348 4.2283 0.0516

5 at N:0.0184, on n -3.2551 0.7730 -4.2112 0.0520

6 pn(�̂) on n2 0.0069 0.0017 4.1992 0.0523

7 pn(
̂f ) on 1 -556.0178 234.2183 -2.3739 0.1409

8 at N:-0.0380, on n 4.7542 2.0019 2.3748 0.1408

9 pn(
̂f ) on n2 -0.0102 0.0043 -2.3735 0.1409

10 pn(
̂b) on 1 788.0883 335.0808 2.3519 0.1430

11 at N:0.0036, on n -6.6785 2.8640 -2.3319 0.1450

12 pn(
̂b) on n2 0.0142 0.0061 2.3134 0.1468

What about almost sure convergence of GMM? Table 9 has two pos-

itive derivative evaluations for GMM suggesting ‘almost sure’ divergence,

compared to none in Table 5 for the OLS. The absence of almost sure con-

sistency (divergence) of GMM compared to OLS is a robust result. We have

used another set of regressions where we regress on 1, n, (1/n) and again eval-

uated dan/dn at n = N to find that all four coefficient evaluations for OLS

are negative, whereas only two evaluations for GMM are negative. Detailed

tables for the alternate nonlinear specification are omitted for brevity.

Hence the available partial information about the functioning of estima-

tors using a quadratic function of n further confirms that that the GMM

estimator provides no convergence in probability advantage over OLS in the

specific context of our NKPC estimation.

When the available time series are close to random walk (nonstationary,

integrated of order 1), many econometrics texts including Vinod (2008) (See

16



Table 9: Table for almost sure convergence of GMM coefficients of NKPC

model regressing an on 1 (intercept), n and n2, and (dan)/dn at N

seq. ref. coef. Estimate Std. Error t value Pr(>∣t∣)
1 an(
̂0) on 1 -22.6667 23.2273 -0.9759 0.4321

2 at N:-0.0031, on n 0.1994 0.1985 1.0042 0.4210

3 an(
̂0) on n2 -0.0004 0.0004 -1.0113 0.4183

4 an(�̂) on 1 288.3878 75.5903 3.8151 0.0623

5 at N:0.0118, on n -2.4518 0.6461 -3.7949 0.0630

6 an(�̂) on n2 0.0052 0.0014 3.7808 0.0634

7 an(
̂f ) on 1 -231.2743 142.4961 -1.6230 0.2461

8 at N:-0.0304, on n 1.9945 1.2179 1.6376 0.2432

9 an(
̂f ) on n2 -0.0043 0.0026 -1.6485 0.2410

10 an(
̂b) on 1 788.0883 335.0808 2.3519 0.1430

11 at N:0.0036, on n -6.6785 2.8640 -2.3319 0.1450

12 an(
̂b) on n2 0.0142 0.0061 2.3134 0.1468

page 187) note that the OLS estimate converges to the true value at the rate

n compared to the usual rate
√
n. This is the super-consistency mentioned

earlier. Our tables showing that OLS has better convergence than GMM in

the context of NKPC model may be due to the super-consistency property

of OLS involving integrated variables (�t, xt) outweighing the endogeneity

effects. Of course, we have a combination of proxy and instrument choices

and differeing degrees of nonstationarity (d of I(d)) of variables appearing

in the NKPC model. It is impossible to know whether super-consistency or

endogeneity are more important, except by tailor-made evaluations of the

actual functioning of the estimators using simulations such as ours.
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4 Efficient Estimation of NKPC Model

While OLS may be converging, we know that the presence of autocorrelated

regression errors can lead to inefficient estimates. Generalized least squares

(GLS) estimation allows for non-spherical regression errors in eq. (3). Some

R tools for this discussed in Vinod (2010) are applied in this section to the

NKPC model. We use an R function called ‘bestArma’ to help decide which

ARMA(p,q) model fits the regression residuals best.

We study Akaike Information Criterion (AIC) for various ARMA(p,q)

models ranked by the AIC values from the smallest to the largest. For annual

data, one does not usually choose the AR order larger than 2. Since this is

quarterly data, it is reasonable to allow for order 4 error autocorrelations.

The best model associated with the smallest AIC represents ARMA(4, 2).

Its coefficients with standard errors are:

ar1 ar2 ar3 ar4 ma1 ma2

-0.6484 0.4989 0.6164 0.3980 -0.0349 -0.8096

s.e. 0.1021 0.0822 0.0724 0.0624 0.0958 0.0913

The GLS coefficient estimates for the NKPC model are: � = 0.1827763, 
f =

0.5226623, 
b = 0.5199869. Correcting for the first order serial correlation is

fairly common. Using GLS to correct for high order regression errors of the

type ARMA(4, 2) explained in Vinod (2010) is somewhat new.

5 Inference for Deep Parameters

Now we turn to the problem of inference regarding the deep parameters

(2) obtained by solving three highly nonlinear equations in three unknowns.

KM09 are concerned with the identification of parameters in the NKPC

model. We propose using Godambe (1985) pivot function (GPF) relying

on his theory of estimating functions explained in Vinod (2008, Sec. 10.3).

The estimating functions are similar to ‘moment conditions’ familiar in
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the context of GMM estimation. The GPF is defined as

GPF =
T∑
t=1

g∗t

/[
T∑
t=1

E(g∗t )2

]1/2

, (5)

where g∗t is the ‘scaled quasi-score function’ from the underlying quasi likeli-

hood function also known as the optimal estimating equation.

The GPF avoids problematic Wald-type pivotal statistic commonly used

in the usual t-tests altogether. It is the standard error in their denominators,

which is known to contribute to possible lack of identification as shown in

Dufour (1997) also cited by KM09. Vinod (1997) extends the GPF to mul-

tivariate regression problems. When there are T observations, in the simpler

scalar case he rewrites the GPF as a sum of T scaled quasi-scores:

GPF =
T∑
t=1

St/Sc =
T∑
t=1

S̃t, where Sc =

[
T∑
t=1

E(St)
2

]1/2

, (6)

where we denote scaled quasi-score functions as: S̃t. As a sum of T items,

the central limit theorem assures us that GPF ∼ N(0, 1), is asymptotically

unit normal. Thus, the probability distribution of GPF is independent of

unknown parameters and therefore it is a pivot.

Vinod (2008) (See pages 456-457) provides the code for the R function

‘gpf’ which computes GPF confidence intervals for each regression coeffi-

cient in a multiple regression sequentially. It involves an application of the

Frisch-Waugh theorem. Our R code uses the ‘gpf’ and the R package called

‘rootSolve’ to solve the three nonlinear equations involved in deep parame-

ters.

The estimate of deep parameters based on original OLS estimates (Table

1 upper panel with intercept and lower panel without intercept) without any

ARMA adjustment are respectively: � = (0.0751, 0.0532) for the probability

that prices remain fixed, � = (0.8166, 0.9184) for the discount factor, and

� = (0.0596, 0.0476), the fraction of backward looking price setters in the

economy.
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Note that if we use efficient GLS estimates after adjusting for ARMA(4, 2)

regression errors, the deep parameters become � = 0.47, � = 1.24, � = 0.58.

See the column entitled ‘GLS’ in Table 10. We also report Godambe Pivot

Function (GPF) confidence intervals for the estimates of deep parameters

restricted to the range [0,1] (not always binding).

Table 10: GPF confidence limits on deep parameters for OLS, OLSno.int (no

intercept) and GLS after correcting for ARMA(4, 2) regression errors
Parameter OLS OLSno.int GLS Lower Upper

� 0.08 0.05 0.47 0.21 0.99

� 0.82 0.92 1.24 0.00 1.00

� 0.06 0.05 0.58 0.29 0.72

Thus we have shown how to use the confidence limits on slopes in eq.

(3) to construct confidence limits on deep parameters of economic interest.

For example, the GLS estimate of �, the fraction of firms looking backward

when they set their prices at 58% with a confidence range of 29 to 72 per-

cent appears to be intuitively plausible to me than the OLS value of 8%.

Similarly the GLS point estimate �̂ = 0.47 for the probability that prices re-

main fixed with the indicated range also seems more plausible than the OLS

value of 0.06. Bils and Klenow (2004) study frequency of price changes for

350 categories of goods and services covering about 70 percent of consumer

spending, using unpublished 1995-97 data from the Bureau of Labor Statis-

tics (BLS). Even though they observe dramatic variation in the frequency

of price changes across goods, they find that about half of prices remain

unchanged for 5.5 months or less. Christiano et al. (2005) have a model ex-

plaining the observed inertia in inflation and output such as ours. These and

other results in the literature suggest that our GLS estimates of � and � are

plausible.

Similar to KM09, our confidence interval estimation does impose the

range limit [0, 1] on all deep parameters. The range limit binds only our

estimate of the discount factor �, implying that our confidence interval for
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the discount rate is problematic. The OLS point estimate is �̂ = 0.82, but

the GLS point estimate exceeding unity is perhaps meaningless, even though

slightly negative interest rate for time-preference calculations in the US is

possible to imagine. Together, these estimates suggest that the point esti-

mate of � is close to 1, even though we do not impose explicit constraint on

it. Recall that KM09 impose the restriction � = 1, which in turn imposes

the restriction that 
f + 
b = 1.

The continuous updated GMM estimates of 95% confidence intervals in

Table 3 of KM09 are � = [0.56, 1] and � = [0, 1] with no confidence interval

for �. Their GMM interval is binding at the upper limit for � and both limits

for �. Clearly, our efficient GLS estimates of all deep parameters are more

attractive than GMM estimates in KM09, perhaps because GMM estimates

might not be converging.

6 Final Remarks

A need for greater realism in macro-econometric work is obvious in light of

recent failure to predict the great recession of 2008. We need a fresh look

at unique challenges arising from evolving dynamics, simultaneity, structural

change of economic regimes and changing nonlinearities. The fresh look in

this paper exploits the free R software. In modern medicine, there is an

attempt to tailor-make the medicines to individual patient using genetic and

other specific information. We use the CC package in R to tailor-make an

inference for the specific non-stationary time series with all their individual

quirks, similar to the ‘warts and all’ of an individual patient.

Our illustration focuses on the New Keynesian Phillips Curve model of

equation (1) specified for estimation as equation (3). It is commonly esti-

mated by various types of GMM estimators in the literature, with an array

of possibly weak instrumental variables. We find that many GMM estimates

using recent quarterly US data are not necessarily superior to the OLS or

GLS.
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The CC package in R allows us to evaluate sample path probabilities

pn for ‘convergence in probability’ and an for ‘almost sure’ convergence in

the context of a simulation based on equation (3). This allows us to check

whether pn, an probabilities indeed decline as n increases over a range of 100

evaluations of 999 sample paths. A statistically significant slope coefficient

of pn, an regressed on n should be negative for sample path evidence of con-

vergence.

The key reason for using the GMM is possible removal of inconsistency

arising from endogeneity of regressors. A simulation reveals that a large num-

ber of sample paths of associated with some GMM coefficients might actually

diverge. Upon considering further evidence based on quadratic fits, we find

that GMM offers no convergence advantage over OLS in the context of our

model. This may be because the GMM might be removing endogeneity, but

OLS retains its super consistency in the presence of possibly I(1) variables

already present in the NKPC model.

Certain identification problems associted with deep parameters are known

in the NKPC literature. We use Godambe’s pivot function (GPF) from

Biometrics to construct confidence intervals for our deep parameters of the

NKPC model, because that pivot is a sum of N scaled scores when there

are N observations, permitting a direct use of the central limit theory, while

overcoming identification problems.

Our GPF confidence intervals have reasonable values for two of the three

deep parameters. Hence our GPF intervals associated with efficient GLS es-

timation in our Table 10 seem to offer a superior alternative to Table 3 on

page 306 of KM09, who needed to impose the constraint � = 1 and yet report

that the upper bound of their 95% interval for � = [0.56, 1] is indeterminate.

Moreover their confidence interval for � = [0, 1] is fully indeterminate, be-

cause binding range constraints are present.
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