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Abstract

Evaluation of causal paths from panel data (time series of cross sections or lon-
gitudinal data) can use pooled data, ignoring the time and space dimensions. More
generally, we want to draw readers’ attention to an algorithm causeSum2Panel(.),
freely available in the R package ‘generalCorr.’ It estimates causality directions and
strengths, focusing on the time and space dimensions. We describe new tools using
the space dimension data to formally test Granger causal directions. We illustrate the
uniquely new insights gained from the two dimensions, using three datasets already
available in the R package ‘plm’ for panel linear models, namely Grunfeld, Crime,
and Cigar. Among new insights available nowhere else, we identify which regressions
suffer from endogeneity issues, causal path directions, and strengths. We indicate
fruitful areas for further research in studies of panel data.

1 Introduction

This paper generalizes the following setting for panel data linear regression models with a
new focus on the directions and strengths of causal paths. Vinod (2019) has 32-page details,
including theorems and propositions. It describes stochastic causality and counterfactual
presence when using our kernel regressions. This paper goes beyond ordinary nonlinear
nonparametric regressions to accommodate special features of panel data.

Panel data typically has a time dimension as well as a cross-sectional dimension. It
is convenient to refer to the cross-sectional dimension as “space,” even though it may not
be literally appropriate in some contexts. A great deal of panel data literature deals with
extensions of the following linear model.

yit = αit + β′
itxit + uit, (1)

where the subscript it refers to i = 1, . . . n spaces at times t = 1, . . . , T , where uit are errors,
βit is a long vector of p parameters, and αit intercepts vary with each i and t. We cannot
estimate (1), since it has too many ((p+ 1)nT ) unknown parameters to be estimated with
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only nT observations. If one assumes that αij = α, a constant, and βij = β, also a constant
vector, we can estimate the so-called pooled data ordinary least squares (OLS) with no
subscripts for the parameters (α, β).

yit = α + β′xit + uit, (pooled) (2)

assuming well-behaved white noise errors uit.
Splitting the error term uit = ui+ϵit, allowing for distinct individual-related errors, may

be realistic. If we treat ui as parameters to be estimated, we have the so-called fixed-effects
(FE) model:

yit = αi + β′xit + ϵit, (fixed− effects) (3)

where ϵit elements are well-behaved, and the individual-specific effects αi are additional
fixed-effects parameters.

If the relations are nonlinear and nonparametric, one uses kernel regressions.

yit = f(xit) + uit, (4)

where f is a generic nonparametric (no β, αi parameters) nonlinear function. Actually, one
should think of f(xit) as a conditional expectation function distinct for each observation.
One can then compute averages of partial derivatives (∂y/∂xit) as approximations to β
parameter vector. There are no intercepts, per se, in kernel regressions. One can approxi-
mate fixed-effect parameters αi from the difference between summations Σyit of data and
summation Σŷit of kernel regression fitted values. The main appeal of kernel regressions is
twofold. First, its fits are usually much better than those of linear models. Second, linearity
is often invalid when human agents are involved. We leave the estimation of (β, αi) outside
the scope of this paper.

Instantaneous kernel causality distinguished from Granger’s causality is made practical
in the R package Vinod (2021) and cited by many, including Allen and Hooper (2018), Allen
(2022), Allen and McAleer (2022), Lister and Garcia (2018), Mlynczak and Krysztofiak
(2019), Fousekis (2020), Vinod (2020b), Vinod et al. (2023), among others. Since these
papers do not deal with panel data, this short paper focuses on describing a newer algorithm
in the ‘generalCorr’ package causeSum2Panel(.). This paper includes R code to facilitate
an application to any panel data.

The R package ‘plm’ by Croissant and Millo (2008) helps estimate panel linear models,
which focus on fixed effect and random effect models using time series of cross sections
of data, also known as panel or longitudinal data. The ‘plm’ package methods do not
report causal directions or strengths of causal paths between y and p regressor variables xj
= x1, x2, ..., xp allowing for control variables (if any) z1, z2, .... The R package
‘generalCorr’ has algorithms for exogeneity testing and estimating causal path directions
and strengths for pooled data, that is, without explicitly allowing for special features of
panel data.

Regarding the estimation of nonlinear “Granger causality,” the R package generalCorr
has the function GcRsqX12() with details in Vinod (2020a). Its arguments are y and
potential causal variables xj = x1, x2, ..., xp. The algorithm uses the ‘np’ package
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by Hayfield and Racine (2008) for Kernel regressions using “local linear” fits and Akaike
Information Criterion (AIC) for bandwidth selection options.

y = f(Ly, Lxj) + u, (5)

where f is a generic nonlinear nonparametric function, u has errors, Ly denotes the set of
all lagged values of y, and Lxj denotes similar sets with all time lags of xj variables. The
flip side regression replaces y on the left-hand side by xj of equation (5) in similar notation
is,

xj = f(Ly, Lxj) + u. (6)

According to Granger’s methods, the causal path xj → y is supported by data if the
R2 or the goodness-of-fit for (5) is larger than the R2

j (distinguished by the subscript j) or
the goodness-of-fit for (6).

Granger causality direction is indicated by the sign of the difference ∆R2 = [R2−R2
j ]. Of

course, the difference needs to be significantly positive over and above sampling variation.
These differences need to be computed several hundred times using bootstrap resamples to
define Granger causality in usual data (not panel). The package generalCorr has functions
for computationally demanding bootstrapping.

Panel data offer a way to avoid computationally demanding bootstraps by using Granger
calculations along the space dimension. We inject a subscript ‘i’ to indicate space in ∆iR

2

sample estimates of differences in goodness of fit for the s-th space dimension. A real-world
indication of sampling variability in ∆R2 values is hidden in the variability among ∆iR

2

distinct space values. Denote their sample mean by ∆̄. Denote the sample variance by
s2(∆). The sample mean is statistically significantly different from zero if the (say 95%)
confidence interval for ∆̄ does not contain zero. Kendall and Stuart (1977) section 20.31
describes “Studentization” for this purpose. Denote the Studentized statistic shown to be
distributed as a Student’s t density with degrees of freedom df = n− 1.

z =
∆̄− µ

s(∆)
∼ t(0, 1, df), (7)

where µ is the true unknown (or null hypothesis value 0) mean of ∆̄, and where the sample
standard deviation is in the denominator. Denote the critical value of the t density with
appropriate df as Cr = |tα/2|. For example, if α = 0.05 and degrees of freedom equal 24.
the R command qt(0.025,df=24)) yields -2.063899. Its absolute value is the critical value
Cr for this example.

The (1− α)% confidence interval is

P{∆̄− Cr s(∆) ≤ µ ≤ ∆̄ + Cr s(∆)} = 1− α. (8)

If the absolute value of the statistic on the left-hand side of (7) exceeds Cr, the sign of
the statistic implying the causal path is statistically significant. The causeSum2Panel(.)

algorithm reports a matrix called outdif, giving all i = 1, 2, . . . , n values of ∆iR
2 for all
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(y, xj) pairs. The column headings have a hybrid name y-xj. It also reports a summary
matrix grangerAns with two rows. The first row has ∆̄ and second the test statistic from
the left-hand side of (7) with µ = 0. The novelty in our Granger causality results is the
formal test for Granger causality, without any computer-intensive bootstraps. Hence, these
results are worthy of further study.

We begin our R session with the initial code to start R with a clean slate and load the
needed packages mentioned above in the current memory of R.

rm(list=ls())

options(width=60)

library(generalCorr)

options(np.messages=FALSE)

library(plm)

Once the data is available as a *.csv or comma-separated Excel file, it needs to be arranged
in a format suitable for the ‘plm’ package. Our illustrations use the data available in the
‘plm’ package already in the needed format.

1.1 Grunfeld Data

This subsection explains the usage of the function causeSum2Panel() of the R package
‘generalCorr’ using the data from the ‘plm’ package. A balanced panel of 10 observational
units (firms) from 1935 to 1954. The time dimension has T=20 years, and the space
dimension has n=10 firms.

data(Grunfeld)

da=data.frame(Grunfeld);attach(da)

head(Grunfeld,2);tail(Grunfeld,2)

p=2 # set this as number of regressors=length(namXjmtx)=rowfnout

The output of the above code provides a look at the data for the first two and the last two
observations. We have inserted the header ‘seq’ for the first column of output representing
the sequence number.

seq firm year inv value capital

1 1 1935 317.6 3078.5 2.8

2 1 1936 391.8 4661.7 52.6

seq firm year inv value capital

199 10 1953 6.53 63.51 11.68

200 10 1954 5.12 58.12 14.33

The total number of rows in the data is seen to be 200 from the last sequence number. It
equals the total number of firms (n=10) times the total number of years (T=20) in the
data. The data are arranged with the entire time series for the first firm, followed by the
entire time series for the second firm (space unit), and so on. This illustrates how the data
needs to be arranged for the ‘plm’ package.
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The underlying kernel regression for this data is

inv = f(value, capital) + u, (9)

where f denotes a generic nonlinear nonparametric function, and u is our generic notation
for errors. The intuitive causal direction from the specification of (9) is from regressors to
the dependent variable. The estimation has an “endogeneity problem” if the data analysis
suggests a reversed causal direction.

The following code illustrates how to use the causeSum2Panel(). The user needs to
provide the name of the data (da) and the names of various variables describing the panel
study of estimation of (9).

cP=causeSum2Panel(da,

rowfnout=2,

colfnout=5,

fnoutNames=c("cause","effect","strength","r","p-val"),

namXs="firm",

namXt="year",

namXy="inv",

namXc=0,

namXjmtx= c("value","capital"),

# chosenTimes=1943:1949,

# chosenSpaces=3:9,

verbo=FALSE)

xtable(cP$strentime,digits=1)

xtable(cP$pearsontime,digits=3)

xtable(cP$strenspace,digits=1)

xtable(cP$pearsonspace,digits=3)

xtable(cP$grandsum)

xtable(cP$grangerAns, digits =3)

In the above code, we have included two extra lines (commented out by the preceding #
symbol) to show how to select a subset of time and space values. If no subsets are indicated,
the default is to include all time and space values in the data. Since this data has T = 20,
with four (= default) time lags for Granger causality calculations.

The R function ‘xtable’ allows output printing in the Latex format. The last few lines
of the above code produce the Latex tables reported in the six tables here.

Since y is the dependent variable in these regressions based on (9), one would expect
that the causal path goes from xj to y. However, the negative averages in the last part
of Table 1, entitled ‘avg’ (−70.6,−2.8), indicate that the causal direction is the reverse
of what might be expected. That is, x1=‘value of the firm’ causes y or gross investment.
Similarly, x2= ‘the firm’s capital stock’ drives y or gross investment in the firm. These
results indicate that the regression suffers from the endogeneity problem. The results are
similar in Table 3, except that the regression of y on capital stock x2 has a positive average
(=16), suggesting no endogeneity problem for the regressor x2.
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Table 1: Summary of causal strengths and directions for various years averaged over 10
firms. Table columns are split into three lines.

1935 1936 1937 1938 1939 1940 1941 1942
1943 1944 1945 1946 1947 1948 1949 1950 1951
1952 1953 1954 avg

y-value -100.0 -77.8 -100.0 11.1 -100.0 -77.8 -100.0 -77.8
-77.8 33.3 -100.0 -100.0 -100.0 -77.8 -100.0 -77.8 -77.8
-77.8 -77.8 44.4 -70.6

y-capital -100.0 88.9 33.3 -33.3 -100.0 22.2 44.4 100.0
-100.0 33.3 22.2 22.2 -33.3 33.3 -77.8 -44.4 33.3
-33.3 -11.1 44.4 -2.8

Table 2: Summary of Pearson correlation coefficients (y,xj) for various years averaged over
10 firms. Positive correlations mean that y and xj move in the same direction. Table
columns are split into three lines.

1935 1936 1937 1938 1939 1940 1941 1942
1943 1944 1945 1946 1947 1948 1949 1950 1951
1952 1953 1954 avg

y-value 0.930 0.834 0.808 0.797 0.887 0.905 0.919 0.924
0.914 0.934 0.951 0.946 0.944 0.887 0.928 0.926 0.929
0.918 0.941 0.925 0.907

y-capital -0.234 -0.142 0.278 0.551 0.463 0.354 0.401 0.419
0.319 0.123 0.155 0.267 0.601 0.584 0.662 0.670 0.636
0.727 0.858 0.919 0.431

Table 2 correlations are almost all positive, implying the variables xj are positively
related to y, with positive averages of 0.907 and 0.431, respectively. Table 4 is similar in
that both row averages (0.546, 0.803) are positive. ) for each firm (space) where we average
over the 20 years.

The grand summary of results in Tables 1 to 4 for Grunfeld data is in Table 5. The
summary table reports only the values in columns entitled ‘avg’ for averages of row value.
They are reported for each regressor x1 (value) and x2 (capital) paired with y. The time
dimension summaries over space dimension are in the first two columns of Table 5. The
column entitled ‘strtime’ summarizes strengths in Table 1. The column entitled ‘cortime’
summarizes correlations in Table 2. Similar space dimension summaries are in the last two
columns of Table 5, again reporting only the row averages in columns entitled ‘strspace’
and ‘corspace’.

The following interpretation is available from the grand summary Table 5. The negative
signs in the column entitled ‘strtime’ indicate that the causal path goes from [y → value],
and [y → capital], where we consider various time values (1935 to 1954) separately. When
we use the standard 5% value for significance, the ‘strtime’ for the row y-capital (-2.78) is
not significantly negative, implying that the causal path might be bi-directional [capital ↔
y].
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Table 3: summary of causal strengths and directions for various firms (spaces) averaged
over 20 years. The columns are split into two rows.

1 2 3 4 5 6 7 8
9 10 avg

y-value -44.4 33.3 -100.0 -66.7 -100.0 55.6 33.3 -88.9
-100.0 -11.1 -38.9

y-capital 100.0 -44.4 -44.4 77.8 33.3 33.3 33.3 -77.8
33.3 NA 16.0

Table 4: Summary of Pearson correlation coefficients (y,xj) for 10 firms averaged over 20
years. Positive correlations mean that y and xj move in the same direction. Table columns
are split into two lines.

1 2 3 4 5 6 7 8
9 10 avg

y-value 0.676 0.488 0.319 0.551 0.825 0.975 0.178 0.839
0.704 -0.096 0.546

y-capital 0.907 0.546 0.809 0.914 0.727 0.950 0.860 0.758
0.754 0.802 0.803

Now, consider the space dimension with ten firms separately, where the column ‘strspace’
reports a negative value (-38.89) for the row label ‘y-value,’ implying the causal path [y →
value]. The positive ‘strspace’ of 16.05 suggests the causal path [capital → y].

The interpretation of all positive Pearson correlation coefficients in the second column,
‘cortime’ and last column, ‘corspace’ of Table 5, suggest that the variables move in the
same direction as y along both time and space dimensions.

We apply kernel regression instead of usual linear regressions in Granger causality as-
sessments based on F tests. We compute differences between two R2 values of flipped
regressions to determine which flip has more significant support in the data. Panel data
provide as many time series as there are spaces, each yielding its own differences between
two R2 values. We compute the average of these differences to be -0.1113 in Table 6 for
the (y-value) pair. It being negative, the causal path is [y → value]. However, it is not
significantly negative. Similarly, the average difference is positive (=0.0723), implying the
causal path [capital → y], which is statistically significant. These computations assume a
time lag of four years in Granger causality.

1.2 Crime Data

This subsection uses ‘Crime’ data from ‘plm’ package for illustration. It has a panel of n=90
space units (counties) from 1981 to 1987 (T=7). We select as our dependent variable (y) by
the command myDep="crmrte" representing the crime rate. The dataset has a great many
variables, of which we select p = 4 by the command myRHS=c( "prbconv", "pctymle" ,

"density", "wser"). They are prbconv = probability of conviction, pctymle = percentage
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Table 5: Grand summary of signed strengths and Pearson correlations for Grunfeld data.
strtime cortime strspace corspace

y-value -70.56 0.91 -38.89 0.55
y-capital -2.78 0.43 16.05 0.80

Table 6: Grunfeld data Granger causality test based on difference of two R2 values. The
degrees of freedom are n-1 (=9) and time lags (=4) are used.

y-value y-capital
mean of differences in Rsq -0.111 0.072

test statistic -1.875 3.516

of young males (between ages 15 to 24), density =people per square mile, and wser = weekly
wage in the service industry. The underlying kernel regression for this data is

crmrte = f(prbconv, pctymle, density, wser) + u, (10)

where f(.) denotes a generic nonlinear nonparametric function, and u is our generic notation
for errors.

The following code implements the causal path code for panel data estimation of (10).

library(generalCorr)

options(np.messages=FALSE)

library(plm)

data(Crime)

da=data.frame(Crime)

head(Crime,2);tail(Crime,2)

crm=causeSum2Panel(da, f

colfnout=5, # always 5

fnoutNames=c("cause","effect","strength","r","p-val"),

namXs="county",

namXt="year",

namXy="crmrte",

namXc=0,

namXjmtx= c( "prbconv", "pctymle" , "density", "wser"),

rowfnout=4, # number of regressors

chosenTimes=NULL,

chosenSpaces=NULL,

ylag=1, #for Granger causality using time series data

verbo=FALSE)

The above code creates an R object called ‘crm’. Further results are accessed as follows.
Note that since T=7 is small, we have chosen ylag=1, not the default 4.

xtable(crm$strentime,digits=1)
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xtable(crm$pearsontime,digits=3)

xtable(crm$strenspace,digits=1)

xtable(crm$pearsonspace,digits=3)

xtable(crm$grandsum)

xtable(crm$grangerAns, digits=3)

The grand summary of results for crime data is in Table 7. Let us discuss the interpretation
of results for the four columns of that table. The signed causal strengths estimated in the
first column entitled ‘strtime’ are all negative and larger than 5, suggesting statistical
significance at the conventional level. Therefore, averaging over spaces suggests a causal
path from the dependent variable crime rate to the four regressors. The same conclusion
holds for three of four regressors in the third column entitled ‘strspace’ averaging over 1981
to 1987. The positive value 33.96 along the line ‘y-pctymle’ suggests the path [pctymle →
y] is seen when averaged over the years.

The Pearson correlations in column 2 of Table 7 give a mixed picture of the crime
data. The negative (-0.24) means that when the probability of conviction goes up, the
crime rate decreases in column ‘cortime’ where one averages over space units (counties).
However, when we see the positive ‘cortime’ values (0.23, 0.71, 0.26), it means that when
the percentage of young males, population density, or weekly wage in the service sector
increases, the crime rate also increases. Thus larger male proportion, population density,
and wages are unlikely to reduce crime.

The Pearson correlation reporting column 4 is entitled ‘corspace’ in Table 7. The values
are (-0.20, 0.01, -0.07, -0.04), having three negatives and one positive value, also giving a
mixed picture. Detailed output by time dimension and space dimension similar to Tables
1 to 4 are printed by our code but omitted here for brevity.

Table 7: Grand summary of signed strengths and Pearson correlations for crime data.
strtime cortime strspace corspace

y-prbconv -52.38 -0.24 -24.20 -0.20
y-pctymle -69.84 0.23 33.96 0.01
y-density -77.78 0.71 -11.98 -0.07

y-wser -14.29 0.26 -17.10 -0.04

The R output of xtable(cP$grangerAns) in the above code ends with all positive signs
of average causal paths, implying the regression path from each regressor to y remains so
according to nonlinear Granger causality. However, the first column (y-prbconv) of Table 8
test statistic (=0.966) is statistically insignificant, implying that the causal path [prbconv
→ y] is tenuous.

1.3 Cigar Data

Cigar data in the R package ‘plm’ has a panel of n=46 observations from 1963 to 1992
(T=30). The space dimension is US states. In total, we have 1380 rows of data. The

9



Table 8: Summary of Granger causality study with average ∆̄ and its test statistic for
crime data. The degrees of freedom are n-1 (=89), and one-year time lags are used.

y-prbconv y-pctymle y-density y-wser
mean of differences in Rsq 0.020 0.183 0.137 0.109

test statistic 0.966 7.495 6.135 4.845

kernel regression model is

sales = f(pop16, price, pimin, ndi) + u, (11)

where f denotes a generic nonlinear nonparametric function, and u is our generic notation
for errors.

The dependent variable is cigarette sales in packs per capita (sales). Our four regressors
are population above the age of 16 (pop16), price per pack of cigarettes (price), minimum
price in adjoining states per pack of cigarettes (pimin), and per capita disposable income
(ndi). After cleaning the memory, the following code brings the cigar data into the current
memory of R.

library(plm);data(Cigar)

da=data.frame(Cigar)

head(Cigar,2);tail(Cigar,2)

The following code processes the data to estimate causal path strengths and directions in
our estimation of (11). Since T=30 is large enough, we use the default time lag of four
years in assessing Granger causality by leaving the argument ‘ylag’ unspecified. The code
produces various tables below, though we include only the last two summary tables.

cP=causeSum2Panel(da,

rowfnout=4,

colfnout=5,

fnoutNames=c("cause","effect","strength","r","p-val"),

namXs="state",

namXt="year",

namXy="sales",

namXc=0,

namXjmtx= c("pop16","price","pimin","ndi"),

verbo=FALSE, verboLatex=TRUE)

xtable(cP$strentime,digits=1)

xtable(cP$pearsontime,digits=3)

xtable(cP$strenspace,digits=1)

xtable(cP$pearsonspace,digits=3)

xtable(cP$grandsum)

xtable(cP$grangerAns)
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Similar to the section on crime data, we report only the grand summary for both time
and space dimensions in Table 9.

Recall that negative values of strengths in the first column of Table 9 indicate a reverse
causation from [y → xj]. When we average over all the states, the variables pop16 and
ndi have the endogeneity problem in regressions for various years. All positive strengths in
the third column, ‘strspace’ suggest the intuitive causal directions [xj→y]. The magnitude
of strengths exceeds 5, implying they are statistically significant. In Table 9, all strengths
are significant. We find that [y → pop16] and [y → ndi] along the time dimension after
averaging over the spaces.

Pearson correlations are in the second column, ‘cortime,’ and the fourth column, ‘corspace’
of Table 9. They are negative in both columns 2 and 4 for the first three rows of the table.
They suggest that more populous states have larger cigarette sales. If we report correla-
tions for each year separately and average over all states, then higher income leads to larger
sales. However, if we average over the years, state-wise sales are lower in richer states.

Table 9: Grand summary of signed strengths and Pearson correlations for Cigar data.
strtime cortime strspace corspace

y-pop16 -45.2 -0.103 26.3 -0.201
y-price 53.6 -0.426 91.8 -0.545
y-pimin 55.6 -0.125 90.6 -0.533

y-ndi -20.0 0.242 37.4 -0.422

The R output of xtable(cP$grangerAns) in the above code ends with all four positive
signs of average causal paths implying the regression path from each regressor to y, remains
so according to nonlinear Granger-causality. The test statistics in the second row of Table
10 suggest that all path directions are statistically significant.

Table 10: Summary of Granger causality study with average ∆̄ and its test statistic for
cigar data. The degrees of freedom are n-1 (=45), and four time lags are used.

y-pop16 y-price y-pimin y-ndi
mean of differences in Rsq 0.132 0.117 0.154 0.144

test statistic 7.137 8.824 8.331 8.795

2 Further Extensions

Panel data regressions have mostly been linear, even though linear models have poorer fits,
leading to much larger errors. Their better-fitting nonlinearization creates problems for
fixed-effect models since kernel regressions do not have direct estimates of the intercepts.
Estimation of average partial derivatives (∂y/∂xit) as approximations to β parameters is
straightforward using the R packages ‘np’ and ‘generalCorr.’ This area deserves further
attention. Another neglected area of research is applying Granger-causality to the time
dimension of Panel data using the bootstrap.
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This paper illustrates newer tools in ‘generalCorr’ that exploit the special features of the
time and space dimensions in Panel data. We show how to use causeSum2

Panel() to identify which regressors suffer from the endogeneity issues. We also estimate
causal path directions and strengths available nowhere else.

We claim novelty in the development of equation (7) for estimating the statistical signif-
icance of Granger-causality path directions, without using computer-intensive bootstraps.
Finally, this paper provides R code templates for practitioners to implement the function
using three commonly used Panel data sets.
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