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Abstract

We study recent monthly data to help long-term investors
buy or sell from the 30 Dow Jones Industrial Average (DJIA)
Index components. The recommendations are based on six stock-
picking algorithms involving comparisons of probability distributions.
We use data for 30 stocks using the recent 472 months (39+
years) of monthly returns ending in March 2024. Our buy-sell
recommendations also use newer “pandemic proof” out-of-sample
portfolio performance comparisons from the R package ‘generalCorr.’
We include modified omega (gain-to-pain ratio) computation to
compare stock performance.

1 Introduction

Wall Street investment outfits use stock prices attached to stock symbols. We
use fairly long price data for 39 years and four months, ending in March 2024.
If $1 is invested in buying a stock priced at Pt at time t, if the price (adjusted
for dividends) at time t+1 is higher, the net return rt = [(Pt+1−Pt)/Pt] will
exceed the initial investment of $1. Since the net return is negative when
losses are incurred, one defines gross return as (1+rt) = 1+(Pt+1−Pt)/Pt =
Pt+1/Pt. The gross return is always positive since prices are positive.

*E-Mail: Vinod@fordham.edu, Professor of Economics, Fordham University, Bronx,
New York 10458. I thank Fred Viole for useful comments.
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Continuously compounded return is the exponential return, exp(rt),
which is always positive. The series expansion of exp(rt) is (1+rt+r2t /2!+..).
Assuming higher order terms in the expansion can be ignored, (|rt| < 1), one
can write exp(rt) = 1 + rt. It is customary to equate the exponential return
to the gross return and write rt = log(Pt+1/Pt) = logPt+1 − logPt. Many
published papers often use the first difference of logs of prices evaluated at
time t+1 as a return from investment in the Dow Jones Industrial Average’s
30 (DJ30) stocks. Since the return data do not always satisfy (|rt| < 1), we
use rt = [(Pt − Pt−1)/Pt−1] for our monthly returns.

We begin with Tables 1 and 2 for company names, ticker symbols,
relative weights in DJIA, and a (case-sensitive) single character name for
identification of the company in a scatterplot of mean return on the vertical
axis and standard deviation of returns measuring the volatility (risk) for
that stock on the horizontal axis. The scatterplot of Figure 1 is inspired by
Markowitz’s efficient frontier model without the risk-free rate straight line.

The basic idea behind Figure 1 is that we imagine grouping stocks into
a certain number (=7) of unequal-width ranges of standard deviations class
intervals. Our 30 stocks are assigned to these seven intervals. Now, the stock
yielding the highest average return for each level of risk (measured by the
midpoints of the sd class interval) dominates all those below it in Figure 1.
The dominating stocks from DJIA are graphically identified as (j, v, h, f,
C, a, z). The corresponding longer company names of dominating stocks,
according to Tables 1 and 2, are Johnson and Johnson, Visa, Home Depot,
Microsoft, Salesforce, Apple, and American Express.

1.1 Descriptive statistics for the DJIA stock returns.

This section reports some basic information about our data using standard
descriptive stats. We report ‘min’ for the smallest return, Q1 for the first
quartile, where 25% of data are below Q1, and 75% above Q1. ‘Median’ and
‘Mean’ are self-explanatory. Q3 is for the third quartile (75% below and 25%
above), and ‘max’ denotes the largest return.

In Finance, two additional descriptive stats are often used. The Sharpe
ratio is the ratio of mean to standard deviation (sd) of returns. It is
named after a Nobel-winning economist, Sharpe, and represents risk-adjusted
average return. The second descriptive statistic in Finance is the ‘expected
gain to expected pain ratio.’ It is called ‘omega’ in Keating and Shadwick
(2002).
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Figure 1: Mean-standard deviation Efficiency Frontier for Dow Jones 30
stocks
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Table 1: Company names, ticker symbols, weight in DJIA, and abbreviations
with only one character. Part 1

Seq. Company Symbol Weight char1
1 Apple Inc AAPL 2.93 a
2 Amgen Inc AMGN 4.65 A
3 Amazon.com Inc AMZN 2.99 z
4 American Express Co AXP 4.09 x
5 Boeing Co BA 2.88 b
6 Caterpillar Inc CAT 5.83 c
7 Salesforce Inc CRM 4.71 C
8 Cisco Systems Inc CSCO 0.83 S
9 Chevron Corp CVX 2.85 e
10 Walt Disney Co DIS 1.94 d
11 Dow Inc DOW 0.97 D
12 Goldman Sachs Group Inc GS 7.24 g
13 Home Depot Inc HD 5.72 h
14 Honeywell International Inc HON 3.33 H
15 Intl Business Machines Corp IBM 2.91 i

1.1.1 Sharpe ratios for risk-adjusted stock returns

Recall that the risk (horizontal axis) versus return (vertical axis) scatterplot
of Figure 1 suggests that Johnson and Johnson, Visa, Home Depot, Microsoft,
Salesforce, Apple, and American Express graphically dominate others. The
respective Sharpe ratios of these stocks are (0.22, 0.26, 0.23, 0.25, 0.22, 0.19,
0.15). Note that the Sharpe ratio is a direct measure of risk-adjusted return,
bypassing the grouping of stock returns into standard deviation (sd) intervals.

The lowercase versions of ticker symbols for the top seven Sharpe
ratios in increasing order of magnitude are amzn=0.22, jnj=0.22, crm=0.22,
unh=0.23, hd=0.23, msft=0.25, and v=0.26, respectively. A stock-picking
algorithm based on the Sharpe ratio is supported by Markowitz’s theory. It
is one of the six algorithms discussed later in Section 3.

1.1.2 Alternate computation of “omega” for stock returns

This subsection describes the well-known “omega” measure for comparing
the performance of many stocks. Since a larger omega means a larger
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Table 2: Company names, ticker symbols, weight in DJIA, and abbreviations
with only one character. Part 2

Seq. Company Symbol Weight char1
16 Intel Corp INTC 0.61 I
17 Johnson & Johnson JNJ 2.53 j
18 JP Morgan Chase & Co JPM 3.33 J
19 Coca Cola Co KO 1.06 k
20 McDonald’s Corp MCD 4.75 m
21 3m Co MMM 1.58 M
22 Merck & Co. Inc. MRK 2.25 K
23 Microsoft Corp MSFT 6.88 f
24 Nike Inc Cl B NKE 1.62 n
25 Procter & Gamble Co PG 2.80 p
26 Travelers Cos Inc TRV 3.69 t
27 Unitedhealth Group Inc UNH 8.52 u
28 Visa Inc Class A Shares V 4.75 v
29 Verizon Communications Inc VZ 0.68 V
30 Walmart Inc WMT 1.04 w

preponderance of positive returns, a stock having a larger omega is more
desirable.

The idea of measuring a gain-to-loss ratio is first mentioned in Bernardo
and Ledoit (2000), who define r as a risk-adjusted excess return over a target
return. Their risk adjustment requires assumptions about the utility function
of investors. This paper avoids any assumption regarding investor utility
functions. We do retain their distinction between r+ = max(0, r), its positive
part, and r− = max(r, 0), its negative part. Their gain-loss ratio is Ωbl, where
the subscript ‘bl’ identifies authors.

Ωbl = E(r+)/E(r−). (1)

Keating and Shadwick (2002) (“KS02”) name a “cumulative probability
weighted” gain-loss ratio ‘omega,’ without assuming anything about the
utility function of investors. The gains and losses in KS02 are compared to
a target return. If all stocks in a data set have a common target return, we
can subtract it from all returns and work with returns in “excess of target.”
Hence, there is no loss of generality in letting the target be zero. Therefore,
our target return is mostly zero in the sequel.
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Let f(r) denote the probability distribution function of returns, and F (r)
denote the (cumulative) distribution function of returns. KS02 define

Ωks = E(gain)/E(loss), (2)

where the expectation operator from probability theory in E(gain) is
represented by choosing weights (1 − F (r)) by assuming continuous
distributions. Similarly, KS02 represent E(loss) by choosing the weights
F (r). The subscript ‘ks’ in Ωks identifies the authors of KS02.

With discrete data, we replace F (r) with the empirical cumulative
distribution function (ECDF), a step function of returns. Figure 2 illustrates
the ECDF for an imaginary stock A with n = 4, returns ri = (−3,−1, 2, 5),
for i = 1, 2, ., n. A vertical axis at r = 0, shown in Figure 2, separates the
ECDF for stock A into the loss side on the left (for r− = max(r, 0)) and the
gain side on the right (for r+ = max(0, r)).

How do we represent the E operator weights in the discrete case? Usually,
mathematical expectation E(x) = Σxipi (return xi with probability pi) is the
average return. KS02 formulate the mathematical expectation of aggregate
loss based on cumulative sums of negative returns ri times corresponding
cumulative probabilities from F (r) as weights. Their gain side weights based
on (1− F (r)) are from the areas above the ECDF steps.

The ECDF on the loss side for the toy stock A has two negative ranges,
(−3,−1) and (−1, 0), with areas under the pillars for the two ranges of (1/n)
and (2/n), respectively. The respective gain side weights (2/n) and (1/n) are
based on (1− F (r)). These weights represent the areas above the pillars for
the two ECDF ranges (0, 2) and (2, 5) on the right-hand side of the zero axis
in Figure 2.

The KS02 weighting scheme of Ωks is similar to that of partial moments of
degree 1. Hence, Ωks of (2) is the ratio of the upper partial moment (UPM) of
degree 1 to the analogous lower partial moment (LPM), Viole and Nawrocki
(2016). The R package called NNS, Viole (2021), has convenient functions
called UPM and LPM to compute them, and hence

Ωks = UPM(1, 0, r)/LPM(1, 0, r), (3)

where r is a vector of returns, and where we have included the arguments
(degree=1, target=0) of the R functions in the package.

This paper suggests replacing the cumbersome weighting scheme based
on ECDF pillar areas used by KS02. We suggest intuitively sensible ratio of
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Figure 2:
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aggregate gain to aggregate loss without using F (r) and (1− F (r)) weights.
We simply modify equation (1) as:

Ωsum =
Σi(r

+
i )

Σi|(r−i )|
, (4)

where the subscript ‘sum’ refers to summations in the formula. The
numerator and denominator are both positive.

Alternative formulation is

Ωavg =
Σi(r

+
i )/n

+

Σi|(r−i )|/n− , (5)

where n+ denotes the number of positive returns in the data, and n− denotes
the number of negative returns in the data, and where the subscript ‘avg’
refers to the averages (expected values) in the formula. Comparing the
formula Ωavg with Ωsum suggests that Ωavg is larger when n− is large and
that Ωavg is smaller when n+ is large. We use examples to show that such
behavior of Ωavg cannot be justified by the underlying logic of investors’
gain-to-loss ratios in Finance.

If the stock returns were arising from an independent and identically
distributed (IID) process, the probability of observing each return ri is 1/n.
Since the market returns are almost never IID, the probability of sum of
k returns (Σkri) equals the sum (k/n) of their individual probabilities and
adjustments for all joint probabilities observing all subsets of the k returns
(ri, ri+1, . . . ) at the same time. Such joint probabilities are almost never
known to the researcher since a stock’s return is intimately related to its
past. Replacing expected values by simple averages pretending that returns
are IID is incorrect. The Ωavg defined in equation (5) implies an incorrect
use of the probability theory concept of the “expected value.”

Now we consider a practical reason for avoiding the Ωavg of (5). Recall
the imaginary stock A returns be rAi = (−3,−1, 2, 5) used before. Verify that
ΩA

sum = (2+5)/(3+1) = 1.75. Now imagine stock B having rBi = (−4, 1, 2, 4)
having the same ΩB

sum = 1.75 though the ΩA
avg ̸= ΩB

avg. The aggregate gain
(=7) and aggregate loss (=4) and gain to loss ratio (7/4=1.75) to the investor
is exactly the same for stocks A and B. The aggregate gain of 7 for stock B
is spread over n+

B = 3 periods, while the aggregate loss 4 is spread over only
one period n−

B = 1. The aggregate gain and loss for stock A is spread over
two periods n+

A = 2 = n−
A. The practically irrelevant (to the investor) sizes of
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(n+, n−) should not be allowed to contaminate the computation of the gain
to loss ratio. Hence, we suggest rejecting Ωavg in favor of Ωsum.

Table 3: Table of basic descriptive stats. ‘Sharpe’ is the ratio of mean to
standard deviation (sd). Ωs is Ωsum, the sum of all positive returns divided
by the sum of all negative returns. Count of non-missing or available sample
size in the last column, ‘Av.N.’ Part 1
ticker min Q1 Med Mean Q3 Max sd Sha- Ωs Av.

-ian rpe N
aapl -57.74 -4.75 2.50 2.35 9.66 45.38 12.21 0.19 1.7 471

amgn -41.53 -3.62 1.59 2.15 6.31 45.88 9.95 0.22 1.8 471
amzn -41.16 -4.75 2.47 3.61 9.76 126.38 16.61 0.22 2.0 322
axp -32.09 -2.37 1.37 1.32 5.87 85.03 8.73 0.15 1.6 471
ba -45.47 -3.89 1.45 1.18 7.02 45.93 8.85 0.13 1.4 471
cat -35.91 -4.22 1.85 1.53 7.17 40.14 8.97 0.17 1.6 471
crm -36.03 -4.39 1.83 2.48 9.00 40.26 11.07 0.22 1.8 237
csco -36.73 -3.91 1.72 2.21 8.28 38.92 10.50 0.21 1.8 409
cvx -21.46 -2.55 1.15 1.17 4.82 26.97 6.47 0.18 1.6 471
dis -28.64 -3.32 1.10 1.30 5.74 31.26 7.92 0.16 1.6 471

dow -26.45 -3.44 1.71 0.90 6.55 25.48 9.56 0.09 1.3 60
gs -27.73 -5.21 1.32 1.13 6.59 31.38 9.24 0.12 1.4 298
hd -28.57 -3.43 1.71 1.90 7.11 30.33 8.15 0.23 1.8 471
hon -38.19 -2.40 1.31 1.17 5.05 51.05 7.76 0.15 1.5 471
ibm -24.86 -3.61 0.75 0.84 5.01 35.38 7.45 0.11 1.4 471
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Table 4: Table of basic descriptive stats. Sharpe is the ratio of mean to
standard deviation (sd). Ωs is Ωsum, the sum of all positive returns divided
by the sum of all negative returns. Count of non-missing or available sample
size in the last column, ‘Av.N.’ Part 2
ticker min Q1 Med Mean Q3 Max sd Sha- Ωs Av.

-ian rpe N
intc -44.47 -4.39 1.25 1.55 7.05 48.81 10.63 0.15 1.5 471
jnj -16.34 -2.24 1.25 1.23 4.45 19.29 5.59 0.22 1.8 471

jpm -32.68 -3.86 1.22 1.32 6.41 33.75 9.18 0.14 1.5 471
ko -19.33 -2.08 1.24 1.21 4.62 22.64 5.84 0.21 1.7 471

mcd -25.67 -2.14 1.37 1.28 5.05 18.26 5.94 0.22 1.8 471
mmm -27.83 -2.47 1.21 0.99 4.39 25.80 6.07 0.16 1.5 471
mrk -26.62 -3.03 1.12 1.34 5.90 23.29 6.96 0.19 1.6 471
msft -34.35 -3.58 2.23 2.34 6.77 51.55 9.46 0.25 2.0 456
nke -37.50 -3.33 1.84 1.90 7.06 39.34 9.42 0.20 1.7 471
pg -35.42 -1.78 1.16 1.19 4.93 24.69 5.58 0.21 1.8 471
trv -53.47 -3.16 1.42 1.10 5.06 52.51 7.36 0.15 1.5 471
unh -36.51 -3.23 2.50 2.20 7.39 40.70 9.58 0.23 1.9 471

v -19.69 -2.35 2.33 1.60 5.26 16.83 6.16 0.26 1.9 192
vz -20.48 -2.83 0.52 0.88 4.88 37.61 6.18 0.14 1.5 471

wmt -27.06 -2.43 1.22 1.35 5.53 26.59 6.47 0.21 1.7 471

2 Unbiased Out-of-sample Calculations

Most authors define their out-of-sample from the last few periods of the
data. Since any such out-of-sample time series is sensitive to the peculiar
characteristics of of the last few periods, calculations using them can be
biased. For example, if the out-of-sample (oos) series coincides with the
2020 pandemic, the calculations will have a pessimistic bias.

Vinod (2023) suggests removing the bias by “pandemic proofing” the
calculations on (default= 5%) randomly chosen ‘oos’ data. Each j−th choice
yields a ranking of stocks. Repeating the ranking N (=50, say) times, we
compute their mean µi and standard deviation σi for the i-th stock-picking
algorithm. Vinod (2023) computes a zero-cost arbitrage, where the following
trades are executed. One short-sells (selling without first possessing) certain
dollars worth of the worst stock in DJIA and buys the appropriate fraction
of the best stock as determined by each method.
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Our unbiased ‘oos’ strategy here does not seek a zero-cost arbitrage.
Instead, we just compute distinct stock rankings by each method in-sample
and randomly choose 40% observations for each j − th ‘oos.’

3 Ranking 30 stocks by six algorithms

We report the ranking of 30 DJIA stocks with reference to six stock-picking
algorithms. We split the ranking report into three tables. Each table has ten
stocks at a time in alphabetical order of their ticker symbols. See Tables 5
to 7, where we report two versions of the ranks produced by each algorithm
for (a) in-sample ranks and (b) unbiased out-of-sample ranks.

1. Sharpe-in/out: Section 1.1.1 mentions the Sharpe ratio as a stock-
picking algorithm. Sharpe (1966) devised the ratio of mean return to
standard deviation of returns to represent risk-adjusted return. See
also Vinod and Morey (2000) and Vinod and Morey (2001). Some
adjustments in comparing negative returns, practical limitations, and
extensions to allow for “downside” standard deviation as a better
measure of risk are discussed in Vinod and Reagle (2005).

2. Omega-in/out:

Our computation is described in section 1.1.2, and equation (4) for
Ωsum.

3. Decile-in/out: It is generally agreed that the stock whose probability
distribution of returns is more to the right-hand side is more
desirable. One way to do this is to compare their deciles. The R
package ‘generalCorr,’ Vinod (2021), offers a convenient function called
decileVote(.).

4. Descr-in/out: We compare the traditional descriptive stats of each
stock’s data. Most stats are in the “the larger, the better” category
and get (+1) as weight. The standard deviation represents risk and
gets (–1) weight. This algorithm uses a weighted summary of these
stats for stock-picking.

5. Momen-in/out: Moment values: The first four moments of
a probability distribution provide information about centering,
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variability, skewness, and kurtosis. Our weights incorporate the
prior knowledge that low variability and low kurtosis are desirable,
while larger mean and skewness are desirable. A weighted summary
is implemented in the R package ‘generalCorr,’ function called
momentVote(.).

6. Exact-in/out: This algorithm refers to the exact stochastic
dominance mentioned in section 3.1. The stochastic dominance (SD) of
the first four orders is summarized in the R package ‘generalCorr.’ See
the R function called exactSd(). The theoretical details are available
in Vinod (2024), where iterated integrals of cumulative distribution
functions are used. See the next subsection, 3.1, for a summary of
general ideas behind the theory of stochastic dominance.

3.1 Ranking stocks by exact stochastic dominance

We apply some of the tools described in Vinod (2024) to the portfolio
selection problem for the DJ30 data set used here. We use exact computation
of stochastic dominance using an imaginary stock (x.ref) as worse than the
worst performing stock in DJ30.

We shall see that stochastic dominance needs a reference stock.
Accordingly, we plan to compute the return for each of the 30 DJIA stocks
with reference to the return in excess of the money-losing imaginary 31-st
stock (x.ref). The lowest return over all included DJ30 data set over all
30 stocks is −86.14151, where the negative sign suggests a loss. Let us
choose (x.ref) return −87.38904, which is a little smaller than −86.14151,
implying consistently the largest losses throughout the data period. Thus,
all 30 stocks in our data always dominate (x.ref) throughout the period with
varying dominance amounts.

The exact stochastic dominance computation invented by Vinod (2024)
measures the dominance of each one of the thirty DJ30 stocks over the
(x.ref) imaginary stock. The thirty dominating amounts are comparable
to each other and allow the ranking of the thirty stocks. The computation of
dominating amounts depends on the order k of stochastic dominance (SDk).

The first-order computation of the dominating amount depends on the
exact area between two empirical cumulative distribution functions (ECDFs).
It is customary to use iterated integrals for higher-order computation of
dominating areas since Levy (1973). The R package ‘generalCorr’ computes
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dominating areas for SD1 to SD4 and summarizes their rankings.
Tables 5 to 7 report ranks of stock tickers named in the column heading.

The stocks ranked 1 to 8 (say) are worth buying according to the algorithm
implied by the row name. On the other hand, stocks ranked 23 to 30 are
worth selling. Interestingly, stocks recommended for buying using in-sample
data do not generally agree with the unbiased out-of-sample averages, even
for the same algorithm.

Table 5: All criteria summary ranks of DJ30 stocks for in-sample and average
over randomized out-of-sample returns part 1

aapl amgn amzn axp ba cat crm csco cvx dis
Sharpe-in 16.0 9.0 7.0 21.0 27.0 18.0 5.0 11.0 17.0 19.0

Sharpe-out 30.0 19.0 29.0 21.0 17.0 23.0 15.0 8.0 12.0 26.0
Omega-in 15.0 5.0 2.0 18.0 27.0 19.0 7.0 10.0 17.0 20.0

Omega-out 30.0 17.0 29.0 21.0 19.0 22.0 16.0 8.0 12.0 26.0
Decile-in 9.5 14.0 5.5 8.0 20.0 12.0 9.5 5.5 27.0 26.0

Decile-out 21.5 8.0 14.0 9.5 18.0 7.0 29.0 6.0 26.0 28.0
Descr-in 14.9 16.3 12.7 12.4 17.1 14.0 14.1 14.9 17.3 17.9

Descr-out 20.7 15.1 16.3 16.4 12.7 15.9 14.7 15.0 16.3 19.3
Momen-in 7.0 4.0 1.0 10.0 24.0 12.0 3.0 6.0 16.0 15.0

Momen-out 23.0 6.0 15.5 19.0 7.0 20.0 3.5 1.0 18.0 28.0
Exact-in 8.0 10.0 5.0 17.0 24.0 14.0 4.0 6.0 25.0 19.0

Exact-out 26.0 11.0 5.0 19.0 13.0 18.0 2.0 6.0 21.0 27.0
AvgRank 19.0 7.0 8.0 15.0 22.0 16.0 6.0 3.0 20.0 29.0

Table 8 reports abridged (case-sensitive single character) names of the
top eight stocks for buying (ranked 1 to 8) and the bottom eight for selling
(ranked 23 to 30) by each of our six algorithms. Algorithm names are listed
in Section 3. The algorithm names also appear as row names in Tables 5
to 7. To save table space, we need to abridge the row names to only three
characters. Column names are lowercase versions of the stock ticker symbols.
The last row is named AvgRank refers to the average rank from all six criteria
listed above.
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Table 6: All criteria summary ranks of DJ30 stocks for in-sample and average
over randomized out-of-sample returns part 2

dow gs hd hon ibm intc jnj jpm ko mcd
Sharpe-in 30.0 28.0 3.0 22.0 29.0 24.0 6.0 25.0 13.0 8.0

Sharpe-out 1.0 22.0 6.0 7.0 28.0 25.0 5.0 11.0 4.0 18.0
Omega-in 30.0 28.0 6.0 22.0 29.0 25.0 9.0 24.0 12.0 11.0

Omega-out 1.0 23.0 6.0 7.0 28.0 25.0 5.0 9.0 4.0 20.0
Decile-in 20.0 28.0 7.0 15.5 30.0 22.5 20.0 24.0 15.5 11.0

Decile-out 1.0 14.0 4.0 11.5 30.0 19.5 11.5 3.0 16.0 27.0
Descr-in 17.9 19.0 13.0 16.3 19.6 18.0 14.6 18.1 14.7 14.0

Descr-out 7.9 15.3 13.7 15.7 18.9 16.4 13.6 12.7 14.9 17.7
Momen-in 30.0 25.0 9.0 19.5 28.0 11.0 19.5 17.0 26.0 21.0

Momen-out 9.0 17.0 8.0 10.0 26.0 12.5 21.0 5.0 14.0 29.0
Exact-in 1.0 3.0 12.0 26.0 30.0 13.0 21.0 18.0 22.0 20.0

Exact-out 1.0 4.0 10.0 12.0 30.0 16.0 17.0 9.0 15.0 28.0
AvgRank 9.0 23.0 4.0 14.0 30.0 24.0 11.0 13.0 12.0 21.0

Table 7: All criteria summary rank of DJ30 stocks part 3
mmm mrk msft nke pg trv unh v vz wmt

Sharpe-in 20.0 15.0 2.0 14.0 10.0 23.0 4.0 1.0 26.0 12.0
Sharpe-out 9.0 14.0 16.0 27.0 3.0 20.0 13.0 2.0 10.0 24.0
Omega-in 21.0 16.0 1.0 14.0 8.0 23.0 4.0 3.0 26.0 13.0

Omega-out 10.0 18.0 14.0 27.0 3.0 15.0 13.0 2.0 11.0 24.0
Decile-in 25.0 18.0 4.0 2.0 17.0 22.5 1.0 3.0 29.0 13.0

Decile-out 17.0 23.0 24.0 19.5 9.5 14.0 2.0 5.0 21.5 25.0
Descr-in 18.6 16.3 11.7 13.7 16.6 16.7 11.6 11.1 17.4 14.6

Descr-out 15.3 17.9 15.9 19.7 12.1 18.7 13.0 10.7 13.4 19.1
Momen-in 29.0 18.0 2.0 8.0 22.5 22.5 5.0 13.0 27.0 14.0

Momen-out 22.0 25.0 2.0 27.0 15.5 24.0 3.5 11.0 12.5 30.0
Exact-in 28.0 16.0 7.0 11.0 23.0 27.0 9.0 2.0 29.0 15.0

Exact-out 22.0 24.0 7.0 25.0 14.0 23.0 8.0 3.0 20.0 29.0
AvgRank 26.0 18.0 5.0 17.0 10.0 28.0 2.0 1.0 27.0 25.0
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Table 8: Single character names of top eight stocks for buying and bottom
eight for selling by each of our six algorithms. Algorithm names from earlier
tables are abridged to only three characters (suffix i= in sample, o= out-of-
sample). Column names are ranks by the criterion named along the row.

1 2 3 4 5 6 7 8 23 24 25 26 27 28 29 30
Shi v p S w k n K a h D u C j z m A
Sho D V J e u K C f p a k j h H S M
Omi f S m k w n a K v D u A h C p j
Omo D M V e u f t C p a k j h H S J
Dci u m c w A H k p i f z S h x a C
Dco D H j z g t k M i h v S c A x p
Dsi v u f x z h n c V d D I J M g i
Dso v p b J u V j h K t i w d n a D
Moi z x I c v w d e C D A u S a n h
Moo S H v I V k z p C u w J A b h D
Exi D A n h I c w K g i C z S f a u
Exo D h A H b p k I v i g z S f u J
avg v p j k J H x c S i h f C A z D

Table 9: Unabridged ticker symbols of the top two stocks for buying and
the bottom two for selling by each of our six algorithms. Row names are
algorithm names, as in earlier tables. Column names are ranks.

Ctitrtion 1 2 29 30
Sharpe-in v pg mcd amgn

Sharpe-out dow vz csco mmm
Omega-in msft csco pg jnj

Omega-out dow mmm csco jpm
Decile-in unh mcd aapl crm

Decile-out dow hon axp pg
Descr-in v unh gs ibm

Descr-out v pg aapl dow
Momen-in amzn axp nke hd

Momen-out csco hon hd dow
Exact-in dow amgn aapl unh

Exact-out dow hd unh jpm
AvgRank v pg amzn dow
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4 Final Remarks

This paper describes six stock-picking algorithms for long-term investment
in the DJ30 stocks. Our implementations of omega (gain-to-pain ratio) and
exact stochastic dominance appear to be new. We use monthly return data
for the recent 39+ years to find that each algorithm leads to a distinct
ranking. We report the ranks by each criterion, implying that rank 1 is
the top stock worthy of buying and rank 30 is the bottom stock worthy of
selling. As we change the time periods (e.g., quarters, months, weeks, hours,
etc.) included in the selected DJ30 data sets, the entire analysis will change,
and our data-driven buy-sell recommendations are also expected to change.
For example, Table 8 lists the top eight one-character abbreviations of ticker
symbols to buy or sell. Table 9 lists the top two ticker symbols for stocks to
buy and sell.

Our research shows that the ultimate choice of stock tickers to buy or
sell in suitable quantities within one’s own budget is possible for anyone.
Long-term investors need price data for long time intervals. It helps to
compare many stock-picking algorithms along the lines shown here using a
clear statement of the algorithms. We find that even for the same algorithm,
the in-sample and unbiased out-of-sample ranks rarely coincide.
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