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Appendix

1. Manipulation of p

1 1 I P
P=1res = In%_l+_D_,-R+D,
I+e ™ P
p is defined as p = P*/(P* + D¥*), 27
which is equivalent in SS, p= Py/(P, + Dy) (28)

Multiplying and dividing by P, p = (P/Pu1)[Pet/(P. + Dy)]

Then, p = (Pt/Pt-1)(Pt-1/{Pt+Dt}) = e EPVP-UPL-I/PD) _ Jlog(PUPL-1) + log(PL-l/(P1+D1))

= g8 " 1oB(/{I"RY) = oe+(Dieg(1*R) = 87 (Gince Pt/Pt-1 = Dv/Dt-1 in SS)

Dividends and prices growing at the same time implies that log(P/P.1) = g (29)
Using (31), (24), and (23) p=exp(g - 1) (30)

2. Manipulation of k
k=In(P*+D*)-pInP*—-(1-p)inD*

%k %k
=1n(P*x£—1§:D_)—p1nP*—(1—p)1nD*
=In(P*xp)-pnP*-(1-p)InD*
=(InP*-lnp)-pnP*-(1-p)inD*
=—(1-p)InD*—In P*)~Inp

=—(1-p)6-lnp
k=-(1-p)S-logp (31)
Dividing each term on RHS of (5) by Py,
p= 1
[1 + D¢P{]
In SS, D/P, and log(D/P,) are constants. The latter is in fact 3, so that (52) becomes
p= 1
[1 + exp(8)] '

Inverted to give din terms of p, = log[(1/p) —1]
Therefore, £=-(1 - p)log[(1/p) —1] - logp (32)

! Also, refer to (22).



3. a. Dividend-Price Model in Steady State

Using (27) to substitute for k in (34), 2
O=(r=g) —[-(1 - p)log(1/p - 1) - logp]
(1-p) (33)

Since from (24), p = exp(g — 1),
&= (r—g) + [1-exp(g —r)]log[ 1/exp(g—r) —1] + (g-r)
[1 - exp(g-7)]

6= log[ 1/exp(g—r) —1] 34

Dividend-price ratio is then, Dt/Pt = l/exp(g—r) - 1
=l/(1+G)/(1+R)-1
=R -G)/(1+G)

SO, DH—[/P[:R—G (35)
b. Dividend-Price Model in Dynamic State
Also, &= 2. p'Erusy — Aduy) — k(1 - p) 1n?
=0
where h[ = log(l + R() = lOg[(P[ + D[)/P[-[] (36)
Ad, = log(l + Gy) =log(DVDw1) =g G7)
& =d—p (38)

In steady state, P, and D, grow at the same constant rate, so from (31), (32), and (33), r, Ad,
(or g), and & are all constant, and denoted 7, g, and 6 respectively.

Therefore, (31) becomes 6= i p(r—g)-[K( -p)]

j=0
or & = [(r—-g)—K)(-p) (39)
since O<p<l and by infinite geometric series z pi(r-g) = (r-g)/(1-p).

7 =0

Rewriting k in terms of p, and p in terms of r and g in (44) will produce
Dui/Pi=R-G. (40)

r=0—pd+g+k=¢

Rewriting (39) for r would give heE=6—pSegrk’

4. Gordon Growth Model Revisited

* Also refer to (4) and (7)
? Also, refer to (28) ~ (30)
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ZDl+i
P, =E, —=————, where Ri= [(P.— P.;) + D]/ Py,
[Ta+r.)

J=1

=E ), H 1+ TR, = Z [(1+G)/(1+R)]D,, if G and R are constant.

i=1 J=1 t+j

if div growth and real returns are constant, and equal to G and R respectively.

Since i [(I+G)/(1+R)] = (1+G)/(1+R) ‘Z’, [(1+G)/(1+R)]'

=1 i=0

= (1+G)/(1+R) [ 1 1 if 0<G&R<I, by infinite
1 -(1+G) geometric series
(1+R)
= [(I+G)(1+R)] [(1+R)/(R-G)]
= (1+G)/(R-G)

Then, P.= [(1+G)/(R-G)]D; or Di+1/P: = R-G

S. Linearization of HARA U-fn

E(g)=E(BRc)=1
logL(g,)=log(l)=0
Elog(g,)=E(u,)
Je = Elog(g,)-logE(g,) = Llog(g,)=FElogR, + ElogZ =0
ElogR =—-FlogZ, =—-L(log B —ylogc,)=—log B +ylogc, +u,

[ 4C,+B 1

where logR, =-log f +y lO%rJ%—u,

AC, +B

AC,_ +B

Then, y, =[A(E%)+§}A_llli ( lj
Taking logs, log x, logt [ J (

Let ¢=—‘Z in HARA y, =
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6. The Logic of Algebraic Signs

The model also makes intuitive sense in terms of algebraic signs because if D,=C; in
equilibrium according to Lucas Tree Model, then, if D, goes down, C, goes down as well.
This will lead to an increase in R+ because D, or C, will be reinvested. Therefore, a
decrease in & will cause A+, to increase and Ad.,; as well. Ad,.; will also increase because if
D falls, D..; will be relatively higher regardless of the level of pay-out. However, in an
incomplete substitution between D, and C;, D, and C, are in a complementary relation, so a
drop in C, would mean an increase in D, and an increase in Re+;. Then, the following should
be the correct signs: by = & — pOees + Adr; — Acevr. 61+ has negative sign because if Dy+ 1S

low, #,..>will be high, but for 4,.> to be high A,.; will have to be relatively low.

7. Sample Programs used in Regression

a. SAS

flename chev 'a:\companies\chevron(chv)\chev.prn’;

data chev;

infile chev;

input quarterrit deltal delta chgdivt rmt inveons;
proc print data=chev;

proc reg;

model rit = delta1 delta  chgdivt rmt invcons;

run;

b. Gauss

new;

xx={r,c};

xx;

n=rows(xx);

" no. of observations=n="n;
x=ones(119,1)~xx[.,2:6];

" matrix of regressors “;

X,

bigx=x;

k=cols(x);

"k=cols(x)= no of regressors including one for intercept” k;

y=xx[.,1];



" vector of dep variable data ";

y;

xtx=x'x;

"X

xtx;

invxbceinvpd(xtx);

"invxtx";

invxtx;

xty=x'y;

"Xty";

xty;

b=invxtx* xty;

"p"s

b;

resid=y-x*b;

"resid”;

resid;

"residual sum of squares =rss=resid'resid";
rss=resid'resid;

rss;

df=n-k;

"df=degrees of freedom= n-k" df;
resms=rss/df;

"est of sigma-sq= residual mean square = rss/df " resms;
" standard error of regression " sqrt(resms);
ybar=meanc(y);

"ybar=meanc(y)" ybar;

TotSS= (y-ybar*ones(n,1))'(y-ybarones(n,1));
" total sum of sq= (y-ybar*ones(n,1))'(y-ybar*ones(n,1))" totss;
" R-sq by first method = 1-(rss/totss)";
rsq=1-(rss/totss);rsq;

“predicted values";

pred=x*b;pred;

ypbar=meanc(pred);

"ypbar=meanc(pred)” ypbar;

RegSS= (pred-ypbar*ones(n,1))'(pred-ypbar*ones(n,1));
"Regr sum of sq" regss;



" R-sq= RegrSS/totalSS by 2nd method " regss/totss;
AdjRsqg= 1-(1-rsq)*(n-1)/(n-k);

" Adjusted R-sq= 1-(1-rsq)*(n-1)/(n-k)" Adjrsq;

" F value = [(regss/(k-1)}/[rss/(n-k)]";

Fval = (regss/(k-1))/(rss/(n-k));fval;

LT
*

"Akaike Information criterion AIC=In(residual-mean-sq) + 2*k/n";
aic=In(resms) + (2*k)/n;aic;
"Amemiya prediction criterion AmPC=(residual-mean-sq)(1 + k/n)";

ampc=(resms)*(1 + (k/n));ampc;

(L
13

{ vnam,mean,var,std, min,max,valid,mis } = DSTAT(0,xx);
__con=1;
_olsres=1;
{vnam,mom,bols,stb,vc,stderrb,sigmares,corrxy,rsqols,residols,dwols} =
OLS(0,y,bigx);

"o,
'

varcovb=resms*invxtx;
"varcovb=resms*invxtx";

varcovb;

"Now standard errors of regr coeff's got directly from cov mtx of b";
sel1=sqrt(varcovb(1,1]);
"set1=sqrt(varcovb{1,1])" se1;
se2=sqrt(varcovb[2,2]);
"se2=sqrt(varcovb[2,2])" se2;
se3=sqrt(varcovb[3,3]);
"se3=sqrt(varcovb[3,3])" se3;
sed4=sqrt(varcovb[4,4]);
"se4=sqrt(varcovb[4,4])" se4;
se5=sqrt(varcovb[5,5]);
"seS5=sqrt(varcovb[5,5])" se5;
se6=sqrt(varcovb(6,6]);
"se6=sqrt(varcovb[6,6])" se6;



"Now t-values as ratios of regr coeff to se's “;
t1=b[1}/se1;t1;

t2=b[2)/se2;t2;

t3=b[3}/se3;t3;

t4=b[4)/sed t4;

t5=b[5]/se5;t5;

t6=b[6]/se6;16;

end;

c. ARIMA by SAS

filename chev 'd:\jeffix\chevron(chv)\chev.prn’;
data chev;

infile chev;

input quarterrit deltat delta chgdivt rmt
proc arima data=chev;

i var=rit nlag=28;

run;

e p=2 q=4;

run;

/*lead=12 is also arbitrarily chosen.*/

proc autoreg data=chev;

model rit=/nlag=1 godfrey;

run;

invcons;

d. Eigenvalue/Eigenvector Decomposition by Gauss

new;
x={r*c};
{va,ve}=eighv(x);
va;

ve;

e. Ridge Regression by Gauss

n=119; m=5; load x[n,m]=c:\gauss\lib\chevx.txt;
x;

n=119; m=1; load y[n,m]=c:\gauss\lib\chevy.txt;
Y.

{a,b}=hkbridge(x,y);

vii



a;
b;
proc (2) = hkbridge(x,y);
local t, k, xs, xc, ssq, std, corr, yc, bc,
sighat2, khat, bridge, q, covridge,
w, stderr, crit, kold, iter;
t = rows(x); /* Standardize X andy */
k = cols(x);
xs =x[...I
XC = XS - meanc(xs)';
ssq = diag(xc'xc);
std = sqrt(ssq);
xc = xc ./ std’; /*Element by Element Operation*/
COIT = XC'XC;
yc =y - meanc(y);
bc = yc/xc; /* OLS =/
sighat2 = (yc - xc*bc)'(yc - xc*be)/(t-k-1);
khat = k*sighat2 ./ (bc'bc);
bridge = invpd(corr + khat .* eye(k)) * xc'yc;
q = invpd(corr + khat .* eye(k));
covridge = sighat2 .*q *corr * q;
w = diagrv(eye(k),1 ./ std); * We-nv %/
bridge = w*bridge; /*Unstandardize */
covridge = w*covridge*w;
stderr = sqrt(diag(covridge));

"HKB-noniterative Ridge Estimator”; /*  Print
?;

" khat : " khat;

" Est : " bridge’;

" Std. Err. " stderr’;

crit = 1; /* define constants */
kold = khat;

iter = 1;

do until (crit le 1e-6) or (iter ge 20); /* begin loop
khat = (k) * sighat2 ./ (bridge'bridge);

crit = abs(khat - kold);

bridge = invpd(corr + khat .* eye(k)) * xc'yc;

*/

*/



kold = khat;

iter=iter + 1;

endo;

q = invpd(corr + khat .* eye(k));

covridge = sighat2 .* q *comr * q;

w =diagrv(eye(k),1 ./ std); /* Unstandardize */
bridge = w*bridge;

covridge = w*covridge*w;

stderr = sqrt(diag(covridge));

?;

"HKB-iterative Ridge Estimator”; /* Print =/
?

" khat : " khat;

" Est : " bridge’;

" Std. Err. : " stderr’;
retp(bridge,covridge);
endp;

8. Charts



I. Statement of the Problem

In modern finance it seems as if there is a prevailing tendency to disregard the utility
function when constructing an asset-pricing model. Whether the utility function is relevant or
not in the model has become the dividing line between finance and economics. Even in
economics, it has also been shown that the standard capital asset pricing model (CAPM
hereafter) approximates asset pricing sufficiently, when the marginal utility of consumption
is highly correlated with the return on the stock market'. Some theories, such as the Lucasian
tree model, contend that consumption is eventually replaced by dividends in equilibrium.
Although attempts have been made in the past to bridge this gap between economics and
finance, I believe the relevance of the utility function must be dealt with first, prior to
pursuing further with any type of real asset pricing model.

This paper is motivated by the idea that hyperbolic absolute risk aversion (HARA
hereafter) based time-varying asset pricing model might be an alternative solution to close
this gap between consumption CAPM (CCAPM hereafter) and the actual financial market,
that several studies done in the past attempted unsuccessfully. First, Hall & Flavin, in their
studies on consumption sensitivity puzzle, contended that U.S. consumption is too sensitive
to changes in income. However, it was not the real puzzle at all since the actual consumption
does not track the income process as in their studies. Assuming that consumption is sensitive
to income as in their studies, CCAPM would seem to work well. However, they failed to
recognize the random walk possibility in modeling the process of permanent income.

Second, Mehra & Prescott found that U.S. consumption is too smooth to explain the
observed actual risk premium. In their paper about asset pricing puzzle, they argued that
higher risk aversion parameter must be used to replicate the volatility of the stock market. All
these studies served only as a detriment to the credibility of CCAPM, but they did not
explain why consumption tends to be so smooth. Itis, of course, a widely accepted norm in
economics that consumption is not sensitive to changes in transient income.

The purpose of this dissertation, therefore, is to develop a new consumption-based
real asset pricing model — one that is straightforward and rigorous in modeling technique, yet
simple and easy to implement. And the model has to be able to replicate the actual asset

returns more closely within the reasonable range of risk aversion. Modeling it as

! Blanchard, O.J. & Fischer. S.. Lectures or Macroeconomics, MIT Press, 1996, pp507~510
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“consumption-based” and “real” inevitably involves utility function. And involving utility
function in the model generally entails the assumption of constant relative risk aversion
(CRRA hereafter) in the representative individual’s risk aversion mechanism. I, however,
would propose to assume HARA, because 1) it is a more comprehensive specification of the
risk aversion mechanism_; ii) there has not been sufficient number of known studies using
HARA utility function in the asset pricing model. Therefore, it would be a worthy effort to
examine its possibilities The need for assuming HARA will be more evident as we proceed
further.

In this respect, the HARA assumption seems to gain its ground as part of the core
crux of the model. If the model proves to be effective and good, it will solidify the model’s
foundation on the utility function through the legitimate risk aversion mechanism. Diagnosis
of the risk aversion parameter specified by the assumption will test this, because the utility
function in the model is justified if the model proves to have high predicting power.

Once the model derivation is complete, I will proceed with testing of the model. The
data to be used will consist of the time-series of 10~15 stocks selected according to the
Dividend Yield Strategy. > The strategy is simple: once each year, adjust your portfolio so
you own only the 10 highest yielding stocks in the Dow Jones Industrial Average. These 10
reportedly do better than the market during the down market and at least as well as the
market during the up market. Therefore, these stocks can be said to rely heavily on the
strategy that maximizes dividend-yield ratios. Using the dividend price ratio as a regressor
thus gains a strong empirical rationale as well, apart from the solid theoretical basis to be
seen later.

This will also enable us to construct a simple portfolio consisting of one share each of
these stocks, and compare the portfolio’s performance vis-a-vis the performance of the
market portfolio/index to verify the validity of the strategy. These data are readily available

for download from various websites such as Yahoo Finance.

* This strategy is popularly dubbed “Dogs of the Dow” in the language of the financial market. There is a
number of on-line resources for the Dogs of the Dow rationale. For more details refer to

http://stocks.about.com/moncv/stocks/library/.

i~
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Again, once the model is tested, its forecasting or explanatory power can be checked
with out-of-sample testing. Since the model is of a structural partial equilibrium type, the
regressor data needed for ex-ante forecasting will have to be contemporaneous with the
regressand. Therefore, it will be inevitable for an ex-ante forecasting to obtain futures data,
which is still feasible, but not necessarily an essential task, when we can achieve the same
objective with existing actual data through out-of-sample forecasting. If this model obtains
significant results, it will support the validity of HAR A-based asset pricing, and increase
efficiency and simplicity of the time-varying asset pricing model. 3

The next point to check is whether the new model has any advantage over the existing
models. Certainly, there should be a gain either in the simplicity and ease in implementation
of the model, or in the forecasting/explanatory power of the model. For instance, it can be
compared with a pure data generating process (DGP hereafter) such as autoregressive
integrated moving average (ARIMA hereafter) technique. We will find out if this hybrid
structural model would perform better than pure time series forecasting models such as
ARIMA in the short term forecasting — i.e. monthly or quarterly returns over short-run
forecasting horizon under a year.

As mentioned previously, the new model is developed to provide a simpler and easier
alternative to the existing models and this will be examined in the upcoming chapters. The
out-of-sample forecasting power will also be checked. The data range to be used is mid to
long term (10~30 years), so the comparison with another model will also have to be for the

same time range and the same forecasting horizon. *

* This will be tested by RMSE of out-of-sample forccasts of the competing models.

* For a general overview of the organization of this paper, a schematics chart is provided in Fig 1.



ll. Literature Review

Consumption CAPM is derived from the Euler Equation or the first order condition of
the household utility maximization problem. Merton (1973) 5 showed under what conditions
the standard CAPM formulas could be derived in continuous time from intertemporal

optimization of consumers over portfolio choices and consumption.®

Consumption CAPM is derived as follows. From the first order condition of the house

hold problem we can define

return on risky asset as U(C,)= pEU (C, )R, ., )

and return on riskless asset as U'(C,) = E.U'(C )R, (i1)

Then, the risk premium is 0 = £, {U "(C,., )[R,“l -R, } by subtracting (ii) from (i)
=EU'(C,.)E, [R,, - Rﬂ]+ cov{U' .., )[R,.,,l -R, ]}
—EU'C.)EIR, . - R, l+cofrcc HR,. L 7

cov[U (Cr )R ]
EU'(C,.)

E (iii)

R -R,]=-

u+1

This implies that if R,,.; increases, C,+| increases as well, which means that U’(C.+;) would

go down as C;. increases. Then the cov[U "(C.a )R,M] < 0, which ensures that

E|r —Rﬂ]>o.

w+l

Now to see the parallelism to the standard CAPM, suppose a composite asset or the

market, m, whose return is perfectly negatively correlated with U'(C,,,)
[ie., U'(C.)=-y R, forsome y]. It follows for all risky assets,
COV[U' (Cr+l )R,,,|] = _}’ COV(R",HIR’“_I ) 4 (IV)

COV[UI (Cn-l )le+l ] R }/ var(le+I )

f E[R =R, - = ’
where for asset m E,[R,.,]1=R, E[U(C,.)] * TEUNC,)] N

By substituting (iv) and (v) into (iii) we obtain

Cov[Rrthnuvl] r .
VafI.R,,,,,; J I-EI [Rnu+l ] - Rﬁ]

E{ [Ru’l ]_ R/I = (VI)

3 Merton. R.C., An Intertemporal Capital Assct Pricing Model, Econometrica 41, 1973, pp. 867~887
® Blanchard, O.J. & Fischer. S.. Lectures on Macroeconomics, MIT Press, 1996, pp. 507~510
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COV[R,“_[ le+l ]
var'.Rnu+l ]

E[Ruu]~ R, = BlER o]~ Ry, i

This would be the consumption CAPM mapped into the standard CAPM format. The

or by defining £, as

coefticient f,, can be interpreted as a regression coefficient of Ri.; on Ryy+1.

If a stock covaries negatively with the market, it provides a hedge, and therefore,
consumers will be happy to hold it at an expected return that is even lower than the riskless
return.® The equilibrium relation in (vii) between the expected market return, the riskless
return and the return on any asset does not involve the specification of preferences and risk
aversion. Computing the beta of a security can be done using a simple regression. This would
be an advantage of CCAPM mapped into standard CAPM format.

In general, derivation of security market line is based on a two-period model in which
utility is either defined directly over the mean and variance of portfolio returns or assumed to
be quadratic. However, this type of utility assumption is all too implicit and does not provide
clear explanation as to how it can be assumed away. In essence, the standard CAPM is
considered to be a good approximation to asset pricing when the marginal utility of
consumption is highly correlated with the return on the stock market, or more generally
the portfolio of tradable assets. The presence of a large non-tradable asset such as human
wealth is likely to decrease the correlation. In this case the consumption CAPM may do
better. ’

In practice, however, the consumption CAPM appears to describe asset returns less
accurately than the standard CAPM.'® Therefore, there is a need for proposing to model the
consumption CAPM based on HARA. One reason consumption CAPM does not work as

well as our expectation may be found from the studies on asset pricing puzzle. It started

7 Since cov[RV,, RV-+Constant] = cov[RV,, RVa].
¥ Blanchard & Fischer, Op. cit.

? Blanchard & Fischer, Op. cir.

' Mankiw & Shapiro 1986



initially with the findings by Hall & Flavin.'! They regressed Ci.jon Cy, Yi, Yeer, Yeea, ... Yori,

o

where the variables are all in their usual notation, and found that— ~ 1, where
o
y

o, and o, mean standard deviations of consumption and income respectively, and concluded

that the consumption is sensitive to shock in income. However, they did not consider that

O-C
permanent income could also be modeled after random walk in which case — < 1. Actual

Oy

O-C
U.S. consumption data showed — = 0.45, which is not consistent with permanent income
o

"
hypothesis. Then, the stock market volatility is not explained by this smoothness of
consumption.

Now the real puzzle was that the stock market volatility cannot be explained by this
smooth consumption. Hence, the excess smoothness argument. Again, this was an exhibit
against the efficacy of consumption CAPM. Mehra & Prescott maintained that we need
higher risk aversion to replicate the relatively high market return, which has been historically
around 6.98% whereas the average real return on relatively risk free short-term securities has
been about 0.8%.'% The highest risk premium obtainable by the model was only about 0.35%
far short of approximately 6% of the actual market. They experimented with varying values
of risk aversion parameters from 2 to10. Now, this gives rise to another reason for
assumption of a better risk aversion mechanism as the existing CCAPM assumes
CRRA, and using an overblown parameter greater than one certainly seems unnatural
for any risk aversion mechanism.

As for the modeling technique Campbell & Shiller's "Time-Varying Expected
Returns" suggested a possibly good candidate that fit the category of my search. Campbell

expounded the present-value relations in asset pricing to a great detail in the chapter 7 of

' Flavin. M.A.. The Excess Smoothness of Consumption: Identification and Estimation, Review of Economic

Studies 60. 1993. pp. 651~666: Hall. R. & Mishkin. F.S.. The Sensitivity of Consumption to Transitory Income:

Estimates from Pancl Data on Houscholds. Econometrica 50, 1982, pp. 446~481
'2 Mehra. R. & Prescott, E.C.. The Equity Premium — A Puzzle, Journal of Monetary Economics 15, 1985, pp.
145~161




Campbell, Lo & McKinley (1997)" (CLM hereafter). He examined the relation between
prices, dividends and returns, and presented a technique to approximate the present-value
relation with time-varying expected returns. This technique will be expounded further in the
following chapter on theoretical foundations.

CLM, then, applied the present-value relations to examine the U.S. stock price
behavior. Their empirical works included prediction of stock returns over long horizon using
forecasting variables other than the past returns where dividend-price ratios and interest rate
variables were used. Then, CLM related long-horizon return behavior to price behavior and
stock price volatility in particular. They also applied this relation to VAR to show how time-
series models could be used to calculate the long-horizon implications of short-horizon asset
market behavior.

Until Campbell & Shiller’s results were reported, it used to be thought that expected
asset returns were approximately constant and movements in prices could be attributed to
news about future cash payments to investors. Therefore, Campbell & Shiller’s main
contribution was that they brought due recognition to the importance of time-variation in
expected returns and cast light upon implications for both academics and investment
professionals.

Another technique was suggested from H. Vinod's HARA-based CCAPM
estimation.'* HARA is a relatively new concept that has been explored mostly in finance and
econometrics. Vinod introduced loglinearization technique of CCAPM using small sigma
asymptotics (SSA hereafter). He then estimated HARA parameter based on Godambe-Durbin
estimating function. The estimation function (EF hereafter) is a relatively new concept
adopted in econometrics. For more on EF, it is suggested to refer to Mittelhammer, Judge &

~ 1S

Miller chapters 11 through 13.
Godambe’s robust pivot functions (GPF hereafter) are functions of data and

parameters with a focus on the properties of functions rather than their roots. The roots of the

'3 Campbell. Lo & McKinley, The Econometrics of Financial Market, Princeton, 1997, pp. 253~287.

' Vinod. H.D.. "Concave Consumption, Euler Equation and Inference Using Estimating Functions”,
Proceedings of Business and Economic Statistics section of American Statistical Association, Alexandria,

Virginia, 1997, pp. 118-123
15 Mittelhammer. R.. Judge. G. & Miller, D.. Econometric Foundation, Cambridge University Press, 2000




’ equation GPF=0 are 6, where 6 = (3, k,#) and y = (R,,C,)in the context of this

dissertation.'® He sought robust confidence interval for k and ¢ by constructing double
bootstrap confidence intervals for these parameters with U.S. data from 1960:1 to 1987:4 on
consumption, stock prices and real dividend as in Vinod 1997. He reviewed old estimation
of B and y of the CRRA and found that generalized method of moments (GMM hereafter)
point estimate of 8 did not make economic sense for the U.S. data.

The SSA-EF estimates are simpler and more meaningful for CRRA. Vinod showed
that this result would also hold for HARA using AR(4) instrument and two pivots: Royall’s
pivot and GPF. Royall’s pivot estimation rejected ¢=0 and did not support «>1. However,
after correcting for the median bias and Cauchy distribution problems by double bootstrap
GPF yielded economically meaningful results. Double bootstrap also rejected the Hg: =0
and B=0, and showed k>1 indicating that HARA models are statistically significantly
different from the traditional CRRA.

Incidentally, as for empirically evident AR terms, autoregressive distributed lag
(ADL hereafter) modeling was also considered. The question of lag length can be resolved
by r-values of the AR terms, AIC (Akaike information criterion), or by BIC (Schwartz
criterion), but theses methods involve ad-Aoc elements. So, I also considered Koyck
modeling technique, which is a kind of partial adjustment model. The Koyck technique is

very convenient and powerful for simplifying the lag determination as follows.'’

EI [Ruvl] =a -+ ﬂORmr + IBO/‘LRIMI—I + ﬂ()/l:Rmr—'_’ oot E! [ul+l] (Viii)

. < 1
where B, = B, A", 0<l<l and Z,B,‘ = ﬂo—l—z
k=0 -

A = rate of decay of lags and u, is /id (independently and identically distributed).
R,=a+ B,R, + B AR, + L AR, +-+u, (ix)
Multiply (ix) by A.

AR, = ad+ B AR, + B AR, + BoA R, s ++Au, (x)

' For more explanation on this model sct-up, sec section B of the chapter III of this dissertation.

‘ ' Gujarati. D.N.. Basic Econometrics. McGraw-Hill, 1995, 3 ed., pp. 592~604



. E[R. ]=a(l-2A)+ B,R,, + AR, — Au, by subtracting (x) from (viii)
As demonstrated, all the distributed lag terms are neatly captured in the AR(1) term.
However, this is possible only under the restrictive condition that the rate of decay A'® is
constant over time, which relies on the empirical strength of the assumption.
Still, Koyck modeling technique could suggest a good approximation for empirical

U'(C)

standard CAPM, and with ———~——
U (Cl—l)

to proxy Ry, it may also serve as a good approximation

for CCAPM as well. However, although the possibility for this technique was explored to a
limited extent, it would have less direct relevance with the main focus of this paper, and thus,
may as well be reserved for another project in the future. The schematics in the next page

would help understand the flow of this dissertation.

Baisa parameter that represents the speed at which the persistence or the influence of the lagged variable

decays.
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[Consumption CAPM (Merton)]

Consumption Puzzle (Hall & Flavin)
Asset Pricing Puzzle(Mehra & Prescott)
discount efficiacy of CCAPM.

INeed better risk aversion mechanism.|

C & S Time-varying returns technique:
Taylor-Series Expansion & Loglinearization [

HARA assumption
lgd———| SSA linearization of CRRA U-fn
SSA lineaniztion of HARA U-fn

I The Model: HARA-based CCAPM w/ Time-varying technique ]

Data: Dogs-of-the Dow stocks 30 vrs.
Stationarity Check: DW_ Q-Stat, ADF

Estimation
1) Raw Estimates
i) Adjusted t-stat for 3;=Bs=1

Multicollinearity Check:
Correlation MTX, Aux Regression,
Condition # & Ridge Regression,
Detrending

Diagnosis HARA
K statistic (Delta method)

v

Out-of-Sample Testing
Model vs. ARMA

'

Portfolio Strategy
1) 9 vear portfolio
ti) 1 year portfolio vs. market

Fig 1. Schematics of this disscrtation
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lll. Theoretical Foundations:
Consumption-Based Asset Pricing Models

A. CRRA-Based Time Varying Expected Returns

Time-varying expected returns technique may be said to have been practically developed
by John Campbell and Robert Shiller. They introduced and used the technique heavily in
many of their studies on expected dividends, dividend-price ratio, stock prices and earnings
in the late 80’s. (Campbell & Shiller 1, 2, 3) The present-value relations among the variations
of their model can be traced back to Gordon growth model, which is related to the utility-
maximizing objective function in the following manner.

Objective function: According to Lucasian type models (1978), individuals consume

£ +D,

to Maxz, Y. B°U(C,..) st. )C,+W,=RW,_ & ii)R, = > (1)
r=0 -1
where all the variables are expressed in aggregates and in their usual notation.
Then, the first order condition will be
FOC: U'(Cr) = :B EtU'(Clv-l )Rh-l (2)

where U(C,) or the marginal utility of consumption is equal to the opportunity cost of the
foregone current consumption, which is 5,80 '(C.+1)R.+1 or the future market return adjusted
by the marginal utility of future consumption discounted to the present.

Dividing both sides by U'(C;) we will get

C,7 -1
U,)= =
' U ‘ 1-
——g'gg’i =B E, _CT((C_lLl)lRM , where a y)C"’ assuming CRRA.
! ! U'(C,)=—y—'=C,—r
l-y
Define the net return'® r,, = B E MR -1= ﬂ(&)_y -1 3)
-1 r U'(Cl) t+1 C,

'? For an % assct. just replace rr-; with r,-,. Further, according to Campbell (AER, June 1993, p492)

lr c. Vo 1™ Coi )"
l=F, ﬂ[——'ij ( R, . This may be simplified as 1 = £, ﬁ[—-&] R,.. | if =1, a simple
C levl ) J C'

t

Lt
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vy, 1., Pu+D., Cen
We may further define 4, , = IO%U_'K,‘j— R, J = Iog—P——— v log C @)

t

where /1.4 is a utility-adjusted log return of the asset that a utility optimizing investor
will rationally choose, which is not directly observable. It can be observed only indirectly
through /ogR, ., or r.+) which is an observable variable.

Now, A, is nonlinear, so we need to linearize it in terms of P and D. For this we will

first redefine® log(Z,., +D,.,) = loglexp(p,.,) + exp(d,.,)] = f(p.d). )
Since -C:yiz oxXp(Pr-i1) and §f1= Xp(dy1) , a first order Taylor series
ap  exp(p,.)+expd,,) &d  exp(p,.) +exp(d.,)
expansion of f{(p,d) around the steady-state points p* and d* would give *!
exp(p*) exp(d*)
1) =1 *)+ a* - p* +(d,,, —d*
L exp(p*) of

Defi = = .e. = d =l-p. (6

efine £ = D~ exp(p) rexpl@n) g P e P O

. i . " 1 L P,

Another interpretation of p is that™ p = o? = m% = D, = P+D.

: 1+ —
l+e P

Intuitively, p is the reciprocal of the return in steady state. Therefore, it could be roughly
interpreted as the discount factor in steady state.
Rewriting log(£._, + D,_,)solely in terms of p and d,
l08(P,; + D) = /(p.d) = loglexp(p*) + exp(@*)| + (.., = p¥) o +(d,., —d*)1L- p)
=log(P*+D*)+ pp,,+(1- p)d,,, — plogP*—(1- p)logD*
=k+pp.,+(-p)d,.,, ()
where k = log(P *+D*)- plog P*—-(1- p)logD*

rescaling of the model by the ratio of /% assct return to the market return. This would suggest one way of
pricing i%-assct relative to the entire market.
* pro1=logPin, dpe1=logD;

dlogx d exp(x)

\ 1 . -
! where = — for outside and = exp(x) for inside were used.
X

= Also, sce Appendix 1.

12
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Applying it to R,.; in (4) for an overall view,
logR, , =log(P,, +D,,)—p,
=f(p.d)-p,
=(=-p) PP P k=G, ©))
Then”, logR,, =&, = pp,., +(l- p)d,._, —p, +k
=PpPat(=p) =P =P+ P +k
==, = P.)+ (P —P)+E

div
[ &g:ph—l ,

b b,

=({1- p)d,., +g—-log p—(1- p)o, , whered, =log

=g-logp=g—-(g-r)=r.
Note that in steady state 5, =5,, =6 , k =—log p—(1— p)& as defined above. ** Also note

. r.Y & G .
that™ log p = log 7 \P =D )" log; =g—r or p=ef’.
t -l t~1

&+ can also be rewritten in terms of log dividend-price ratio and dividend growth as

follows?:
En = PP +(l=p)d,  —p +k
=pp.,+d.,—pd.  —p +k
=—p(d,, - p.)+d,., —p +k
=—pld. -p.)+d.  —d +d —-p +k
=6,-pd,, +A4d,  +k ®)

B g = log(Div/P,). A common name for & is dividend vield. The ratio variables, as we sce in the financial
press. arc used as indicators of fundamental value relative to price. If stocks are underpriced relative to
fundamental value. returns tend to be high subsequently. and the converse holds if stocks are overpriced.

** Also. see Appendix 2. equation (26).

* G and R are all in gross terms here. Sec also Appendix 1 and 3.

6 See Campbell & Shiller (3). "The Div/Price Ratio & Expectations of Future Discount Factors", Review of
Sinancial Studies. vol 1, 1989. Also. Campbell & Shiller (2), Stock Prices , Earnings, and Expected Dividends,
Journal of Finance, 1988. vol. 43, pp. 661~676
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Intuitively & is loglinearized R;., that is exactly a linear approximation of 4., except for

U(,.,)

WC,)_ according to the rationale of (2).

yAc,., term 27 which is log

Substituting &+, for log R+ and rewriting 4,.; in terms of linearized variables

1+]

hlrl = longfl —}/lOg C

=f(p,d)=p, —ybe,,

=(l-p)d,., +pp,.,—p +k-yAc,,
=6,—-pd,,+Ad,, +k—-yAc,,

=&, ~vAc,,, =r—yAc,,

Rearranging terms will give the final structural equation between utility-adjusted log return

and log dividend-price ratio, change in log dividend, and change in marginal utility of

consumption:
C
+l
hh'-l = (1_ p)d1+l TPt Kk — Y lo C
‘ (10)
- 5{ - 105t+l + Aa,t+l - }/AC[+1 +k = §t+1
U'(C) . .

If h=(Q1- p)d+ pp+k—ylogl=log U R=logR = & in steady state, since
—yAc, | =-ylogl =0, alimiting case when Ci+, = C,, then

h=E=logR=(- p)d+ pp+k . Therefore, h = £ in steady state. **

This may provide an insight as to why the utility function is generally overlooked
in most financial asset pricing models. Intentionally or unintentionally the financial model
builders attest to an important point that utility function would drop out in the steady state

under the assumption of CRRA.*

* It is conceivable that ¥ Ac,_, canbe any constant yg including 0 in steady state.

* However. ifin SS Ac=g for example, —ydc=—yg. Then, A=& only approximately.
*? Another way to cxplain it is that consumption comes entirely from dividend in equilibrium as in Lucas Tree

model or Cash-In-Advance model.

14



Campbell himself also made this point in his paper “Intertemporal Asset Pricing
without Consumption Data”(AER June "93). He replaces the covariance between the return
on the /# asset and consumption with the weighted average of “the covariance between the
return on the /% asset and the market return” and “the covariance between the return on the i

asset and the upward revision of expected future returns”,

v, : .
re )L, —rp = -5ty V.. +(y =1V, . He, thereby, arrives at a real asset-pricing

model without consumption variable that maps into the standard CAPM format.*°

Another strength of (10) in terms of linearity is that it can also be viewed as an expansion
around &, = &1 = &, because the log dividend-price ratio is assumed to follow a stationary
stochastic process, so that it has a fixed mean that can be used as the expansion point &.

=6, - po,., +Ad,

i+l i+l

Then, for an i asset, h,_, =~ + k , where interpretation of
ir+l

w1

I+ would be the utility-adjusted gross log return on the i asset at time £+1.

Given h,, =&, =k+6, - pd,, +Ad,,, if we impose terminal condition lim p’5,, =0,

t+l s

J 0
h,=k+0,+Ad,,
O, =h,_—-Ad, —k.
. 3 . N k
Solving forward we get™ 9, = Z p’(hh/ - Ad"’)—I__p—' (11)
=0 -

For a multi-period return, we can define a multi-period extension of (9) and solve

forward: £, = z p’E,., , where& | isa discounted j-period return at time 7. 2
j=0

: ) lve,..) |
Slnce 5"! = pe’"*‘l’l = '[)’7""] = plo% U'(Ctvj) th!J
o N 1_ p"
51"_ 2/1]‘1 = 0[ — plé“.ﬂ + ZpJAdr+jvl +k'l_7 (12)
j=0 -

0 Campbell. J.Y .. “Intertcmporal Assct Pricing without Consumption”, dmerican Econoniic Review, 1993

3! See Campbell & Shiller (3), "The Div/Price Ratio & Expcctations of Future Discount Factors", Review of
Financial Studies, vol 1. 1989: p 200. Also. rcfer 10 Appendix 3 and 4 (33) ~ (39)

** Campbell & Shiller (2), Stock Prices. Earnings. and Expected Dividends, Journal of Finance, 1988, vol. 43,

pp. 668. & doesn't have to be discounted. but other terms must.
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However, this multi-period forecasting model requires futures data or solves for historical
return at ¢ with historical data after ¢. Therefore, it is out of the scope of this study. This
model is introduced just to shed light on how multi-period forecasting can be achieved.

Also dubbed “dividend-price ratio model”, equation (11) is indeed a time-varying
version of Gordon growth model or Dynamic Gordon growth model in that the discount
rate *® (i.e. return) and growth rate (i.e. change in log dividend) are allowed to vary over time.
Campbell & Shiller proceed to test vector autoregression (VAR hereafter) generated from
dividend-price ratio model, but that would not be necessary if the goal is to explain and
forecast the expected utility-adjusted log return, 4.+ on the basis of the functional relation we
have seen thus far. Campbell & Shiller’s empirical rationale for the choice of VAR will be
briefly hinted later in the testing part of this paper. Their theoretical rationale would probably
have to do with the Granger-causality characteristic of the model.

Another rationale for my choice of utility-adjusted log returns model can also be
found from Campbell & Shiller (2). In Campbell & Shiller (2) they found that the dividend-
price ratio has strong forecasting power for dividend growth, and the earnings-price ratio (30
year moving average in their studies) is also highly significant. However, their VAR tests
reject more and more strongly as the return horizon increases. In the limit, at / = oo, the
null hypothesis (Ho hereafter) is that the actual & equals the unrestricted VAR forecast of the
present value of future real dividend growth. This hypothesis can be rejected at better
than 0.1% level.

They also find that with their constant expected real returns model**, the actual
dividend-price ratio, &, has only a weak relation to its theoretical counterpart &, a result
that strongly contradicts their model. That &, is less variable than &;’ would suggest that the
dividend-price ratio is unrelated to the theoretical value implied by the constant
expected real return model. However, a short-run coherence between ¢, and &, is suggested
even though the overall correlation between the two is virtually zero. From this one can infer

that VAR may not be a good model.

33 According to Gordon present value relation definition. P=DAR-G).
* Ehy., = r for i=1.2.3... . The main difference in the choice of “#” is that Campbell & Shiller used commercial

paper rate (or T-Bill rate). whereas I am using the market rcturn.
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The main reason for this failure of the constant expected returns model can be found
in Campbell & Shiller (1). The short-term real interest rates they used for discount rate are
not sufficiently variable, and do not have the appropriate correlation with stock prices to
explain big movements in the log dividend-price ratio.*® This is another reason why I am
using “r adjusted by the market return” which should theoretically correspond to the
opportunity cost of the foregone consumption. And as such one doesn’t necessarily have
to assume r to be constant over time, which is another benefit of the time varying model.

On the other hand under the assumption that 6=4;’ holds, Campbell & Shiller also

computed &, =36, — pd, , +Ad,, practically a replica of my model, to test if &, =&, .’
even if the market has superior information not available to econometricians. They found a
strong evidence that returns on stocks are far too volatile to accord with the constant
expected real return present value model, confirming the claims of the volatility literature.
However, although return seems to be too volatile, they found a remarkably high
correlation between actual return &’ and its theoretical counterpart &, equal to 0.915.
Therefore, it is only rational to choose my time-varying returns model over VAR.

Finally, to verify the connection between the log dividend-price ratio model and the
fundamental present value relation we invoke that

logR,, =&, =k+pp. +(1-p)d,. -p,

and impose llil:ln p'p., =0,

k 0
thenv [7, = E_*-ij[(l— p)dhlr] _"14-1#-1] -
J=0

Taking expectations on both sides to allow the discounted future value conditional on the

current expectation in the RHS,

E[p]———-i-El_ )dhx,,"}q”]]

7=

Rewriting it in terms of log dividend-price ratio instead rather than the log stock price,

d, - p, :——_Tk—+E ZP [“Admﬂ M»;]
l-p

3> Campbell & Shiller (1) p218

17
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‘ we obtain the familiar log divided-price ratio model as follows: *°
< k
8, = L p'E(-4d,., + 70, ) -7 . (14)
= J J 1— )
o k [& 1
If we simplify £, [p,] =——+El D> p’ [(1— P, =, ]J
- p I.;=0 J I
k
as pl:l T Pu = Pn>
-p
k [P, +D, |
then =— -p, = E|— 15
pr l_p+[)dt prr IL Rr,l J ( )

which is the basic present value relation.

[t is also consistent with other findings that the relation between p;’ and its theoretical
counterpart p, in Campbell & Shiller (2), defined also in the same manner, shows that p; is
strikingly smoother than p,’ and at the same time shows that short-run movements are highly
correlated. Hence, most of the short-run movements in p,” are seen, in an attenuated form, in
pe. Since & and &' are essentially changes in p,, their behavior is dominated by the short-run
movements in the series so that they are highly correlated with each other. §;and &;’, on the
other hand, are determined by the levels of p, and p,’ and are not as much correlated as p,
and p,’.

One final question arises as [ close this chapter. What did Campbell & Shiller try to
prove? It used to be thought that the expected return in the long run is constant. They tried to
show that it may not, and they had some moderate success in showing that. What I am trying
to do is similar except that [ am not using VAR, but the utility-adjusted log return model

explored in this section combined with HARA to be introduced in the following section.

¢ PE(Ady; —yAcw;) is the PV of k.. Op. cit. pp. 200~201: Campbell & Shiller (2), Stock Prices , Earnings, and
Expected Dividends, Journal of Finance, 1988. vol. 43: pp. 667~669. Also, refer to Campbell, Lo & McKinley,
‘ The Lconometrics of Financial Afarket. Princcton. 1997: pp. 26 1~264 for further technical details.

I8
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B. Hyperbolic Absolute Risk Aversion-Based Asset Pricing Model

1. About HARA
According to Carroll & Kimball (1996), hyperbolic risk aversion®’ is a more realistic
alternative to the power utility used in CCAPM for the following reasons:

I-y

The power utility function is defined as U(C) = —IT , with y > 0.

Then, U'=C7, U”" =—yC7", where U" < 0.

Since Arrow-Pratt risk aversion function is defined as (-U"YU’' = »/C, as C
increases, »/C decreases. This means decreasing risk aversion, which implies concavity of
consumption. This also conforms to what Keynes had argued about marginal propensity to
consume (MPC hereafter) - that MPC out of transitory income or wealth declines with level
of wealth.*® It is only rational that introduction of uncertainty requires concavity.
Therefore, it is essential to allow for decreasing absolute risk aversion (DARA).
However, since -CU"/U" = yis a constant, power utility belongs to a CRRA family. If the
only form of uncertainty is in labor income Y, CRRA utility implies a linear consumption
function. This means that MPC stays constant, even if wealth increases. Hence the power
utility function needs to be generalized.

HARA utility function is defined as

-k o 1+
UC)=H +——h—[AC + BT phere k= a+7) ) (16)
(2-x)4 /4
The constant of integration H can be ignored by assuming ordinal utility function.

Then, HARA U'(C) = [AC + B]M(™™.

Since 1/(1—k) = -y, the power utility function with U’ = C7 is a special case of HARA
with B=H=0, and A=1. Further, (U"U)(U")* = x>0 implies strictly concave consumption
function required by the economic theory. Therefore, k is an important parameter

characterizing 3 special cases of HARA functions:

3 Blanchard and Fischer, Lectures on Macrocconomics. MIT Press, 1996 pp283~284.
* Vinod. H.D.. “Concave Consumption. Euler Equation and Inference Using Estimating Functions”,
Proceedings of Business and Econonic Statistics section of American Statistical Association, Alexandria,

Virginia. 1997. ppl18-123
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1) k =0, then borderline case of quadratic utility function, where

e ..
U=C—EC

11) ¥ = 1, constant absolute risk aversion (CARA, hereafter) function with exponential
utility UC)=—y"e T’ via I'Hopital's rule.
iii) k > 1, HyDARA.*

In the financial economics literature (Huang and Litzenberger 1988 or Ingersol 1987)
the HARA class has been studied in the context of discrete time intertemporal portfolio
selection problem. CCAPM are common in macroeconomics. The power utility remains a
common assumption for Euler Equation estimates of CCAPM. Therefore, it would be a
worthy attempt to propose new estimation of CCAPM under HARA as suggested by Vinod
1999.

2. HARA-Based CCAPM 40
Euler equation is defined*' as E(g,) = E(ﬂR,C[’) =1 (17
where ¢, = C,'C,- assuming CRRA, a special case of HARA with B=H=0, and A=1. (Vinod
1999). However, the EuEqn is not amenable to testing as it is, because it is nonlinear in

parameter. Therefore, it needs to be linearized.

a. Linearization of EuEqn
Kadane’s small sigma asymptotics (SSA)*? linearizes the Euler equation as follows.
1) Remove the E operator: g, = | + ov,, where ¢ is the small ©.
i) Taking logs, log(g) = log(l + ov)) = ovi — 6>V /2 + & v /3 — ...
=u, —(u)¥2 + u)*/3 - ...

SSA letting o — 0 justifies omission of all terms with o’ for j 22 (chosen number)

¥ [fx>1. then O<y<l. which is the normal range for risk aversion parameter values. FYR if O<x<l, y<—1, and if
k<0, then =1 €y<0. which arc both improbable and unrealistic values for risk aversion parameter.

“? Carroll. C.D. and Kimball. M.S. On the Concavity of the Consumption Function, Econometrica 64 (4) , 1996,
pp. 981~992

*! Euler Equation equals 1 for the same reason as equation (3).

2 Journal of American Statistical Association. 1970 pl182 and Journal of Econometrics, 1976 pl47
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iit) A linearization has log(g,) = u, and, therefore, Elog(g,) = Eu,.

Also, logE(gy) =log(l)=0 from (17).

To assure that the omission of higher powers of u, is appropriate, we invoke Jensen’s

inequality on a concave (log) function that Elog(g,) < log[E(g)]-
Therefore, E(u) < 0, instead of E(u)) =0.
Define “Jensen’s Error” Je = Elog(g.) — log[E(g))] = Elog(gy).
To evaluate Je let g=RZ, where R =R and Z = fc¢,”.
Then, log(g) = logR + logZ which means Elog(g) = ElogR + ElogZ,
where logZ = logf — ylogc:.
Reinstating time subscripts,

Je = Elog(g:) = ElogR, + ElogZ, whereZ, > 3 and . (18)

If #and 7 are such that ElogR, = —Elog Z,, then we have Je =0

e UC)
$c. " %ucLy

This will ensure that ER; is exactly the discounted log

Therefore, log(ﬂR,c,"’ ) =log R Z,
Then, ElogR, = —E(logfs — Aogc,) — logR, = Hogf + Aogc, + u, (19)
where a simple regression estimates 3 = ¢’
b. Generalization of the Linear EUEqn Model in terms of HARA
When k>1, HARA = CRRA with shifted origin. Therefore, instead of ¢, = C/C,.;, we
have x = (AC+B)/(AC..1+B). With %,, SSA method

J

1) permits us to ignore o’ —v—’— Jor j22 P asoc—0;
J
i) unlike (19) still implies a nonlinear equation in the parameters £, », A and B:
0gR = 1 od AC. 5B | 2
og og B +y Og{_AC J+u, (20)

3 Thercfore. we can consider only E(u)=Elog(g,) and no higher moments.
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Given any reliable nonlinear (e.g. MLE) estimation software, it is possible to estimate
these parameters from (20). Unfortunately, however, the nonlinear methods are sensitive to
starting values and suffer from certain numerical inaccuracies (McCullough & Vinod 1999).

Therefore, linear approximation is in order.

c. Linear Approximation of HARA for Linear EuEqn Model
Since k = (1+%)/y, we can estimate x from an estimate of y. This reduces (20) to (19)
if B=0 irrespective of A. Then, we can avoid estimating A and focus on estimating k. Thus,
we are trading off the difficulties of nonlinear methods in exchange for approximate formulas
which can be estimated which can be estimated by simple regressions*. So, we proceed as
follows:

1) Redefine the model in terms of g=B/A:

fc. ¢ 11 [ ]
“les e e

i) Substituting ¢=B/A and taking logs,

A T N B
log 7, = logta+ c_ J—IO({I+E:J
g g og
:logrc?’ X(H-éi)}_lo{H—C? }

1)

C ¢] @ \
=log—+ l+— |- .
log C,. log( C, log(l C,,

iit) Assume that C, is such that a Taylor series expansion is valid, i.e.,

4

C

<l.

4
L d
<l an ‘ C.

-1

*! For some data sets this trade-ofl may not be advisable and direct nonlinear estimation of (20) cannot be
avoided.

o
o
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This condition of convergence to a stable point is a prerequisite for a Taylor expansion.

Since log(1+z) = z—z*/2 + 2°’/3 + ..., we can approximate the above expression to the
desired level of accuracy and retain only the linear term z in expanding log(1+z) of the last

two terms in (21), *

C 1 1
I =log—=—+¢| —- 22
0g 7. =log == ¢(C, . ) (22)
Therefore, Linearized Approximate SSA Regression for HARA will be
C[ Cl
logR, =-log B +ylog c + ¥ c. +u, (23)

[f regression coefficients are 3, 5>, [s. the parameters of interest § = (3, x ¢) can be found
by using &= (1 +»)/yand B=e®?, k=(1+ =)/ f>and ¢=0s/p:. (24)
Covariance matrix of 6 , the estimates of (3, , ¢ ), by the delta method*® equals

Cov(é) = (5' v 5), where J/ denotes the 3*3 covariance matrix of g, fori=1,2,3in (23),

- , 86
and where D denotes a 3*3 matrix of 5~—

I

A high value of log(C/C,.;) may be caused by high value of logR;. Then, the error
term u, in (23) may be correlated with log(C/C..1). To avoid this endogeneity problem, we
will need to follow Vinod (1997) and use the predicted value of log(C/C..1) from the AR(4)

as an appropriate instrument for log(C/C..;) approved by Durbin (1960) for optimality:

C 3 C.
log( '):bu+ blo[ ’J
Cl‘l ; ! s Cl—l—]

Note that (19) is a special case of (23) when ¢=B/A=0. Thus, we can test whether the

general HARA model involving the additional parameters A and B are needed by using the
Ho: ¢= 0. Since (20) reduces to (19) if B=0 regardless of the value of A, ¢= 0 is a sufficient
test tor testing B=0 in (20) also. Therefore, if () is significant, meaning ¢ is significantly

different from 0, HARA with A and B are legitimated.

B ZNn+2B3+...50

¥ Sce Greene. 1997, p124. Delta method is used when paramcters to estimate are in nonlinear functional form

o
(V3]



C. Hybrid of Time-Varying Technique and HARA-Based CCAPM

As already shown from the loglinearized HARA-Based CCAPM, if we let g=RZ,

P,,[ +D,. .
where R=R, , =——— and Z = B¢’ , we can express log g; as

P

t

rR + D, _
logg, =logR +logZ, = logl_ P J+log,Bc,’

-1

[P +D, U'(C,)
= lo +log B —log——=——

of “p . |rlee B loeric
L F11+D,T . | C,
=lo P _+o gpf - yooc”

= f(p.d)-p, +log f -y Ac,
= [0~ o), + pp,.. +k=p,|-log B - rac,
~J,,— po, +Ad, —yAc, +k, where k=k-+logp
As we have seen in the Time-Varying Expected Returns technique, we can approximate 4, as
h=96,,-pd, +Ad, —yAc, +k =logl=0

AC +B
=k+06,,—-pd, +Ad, - }/lo%—zc—-—_l+8,, (25)

Using the linear approximation technique and SSA used in I B.2.c. we can rewrite (25):

i 7
C 1 1
h =k+35,_ - ps, +Ad, 7[10g6—+¢[C c jJ+£‘

1 1
=k+0,,— pd, +Ad, — yAc—yq}(C c )+g,
-1

l L
=k+0d,,— pd, +Ad, —ylogR,, ——y¢(c C. j-i—é‘

=L+ P60, + .0, + B;Ad, + B logR,, +,B[Cl, Cl j+a,. (26)

Now, even a simple OLS can estimate §,=0;=1, f-=—p, fi=—}. [s=L:¢, and k= (1+p)/y.

Then, HARA assumption will be affirmed if x >1. For testing the significance of this

-~
- —

.. K .
K parameter, we need a k statistic defined as 7, = _(T , where Delta Method is used to
o(k

24
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d -1+
compute the variance of k, where x = f(y) = vy . Then, _di A i &) ( 3 7)
e

-

, [
and o~ (x) =L— . J o(y ). Also, as discussed in the previous chapters, 4c,can be proxied by
e

logR,,.. This framework would certainly imply what are the relevant variables in constructing
any utility-maximizing CCAPM-based asset-pricing model.

This model has strengths in several points. First, HARA assumption is quite
reasonable and conceivable in the light that the existing CRRA-based CCAPM models have
not been able to replicate the volatility of the market to satisfaction as exhibited by asset
pricing puzzles. As HARA assumes concave consumption with increase in income, it
would naturally embrace the progressively smoothing consumption, not necessarily a
sensitive one such as under CRRA with permanent income hypothesis (PIH hereafter). In
this sense HARA might reasonably replicate the volatility of the market in response up
to a certain point in transitory income.

Second, this is a very solid model in the sense that none of the variables are
arbitrary, but all derived solidly from the fundamental present value relations. Therefore,
it would be the strength of the model that it is theoretically complete. Another strength in a
related issue would be the parsimony in the choice of variables. Adding extra variables
cannot make stock returns unpredictable if they were already found to be predictable using
fewer variables. Therefore, attempts to bring any other variables into the model would be
totally unnecessary unless they are theoretically and mathematically derived.

Third, another useful aspect of this model is that it casts light on the role of the
dividend. Unlike the prevailing tendency in finance to treat the dividend as nothing more
than a signal (synonymous to decoy) and disregard utility function, this model certainly
attests to the realistic possibility that dividends do have a significantly material role in

determining the return. Indeed, the proposed model is a sound loglinearized version of the

D . .
Gordon return equation R = 3 + G having the growth rate of dividend and the growth rate of

market return for G term.
Fourth, the market return which proxies the consumption growth rate instead of

constant expected return of Campbell & Shiller model has the advantage of self-
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adjustment with time. Intuitively it is only reasonable to assume that the stock market
return converges to the macroeconomic output growth rate in the long run. Therefore,
consumption is quite a relevant variable in the asset valuation model if we are using a long
time series. This stipulates a fundamental component to be a legitimate part of any long-term
asset valuation model. Campbell & Shiller must have based their assumption on the postulate
that the return on reasonably long time series such as 10+ years must converge to the long
mean by stationarity. However, the assumption of this long mean is not infallible empirically
in that until the economy reaches a steady state, the macro-variables would hardly manifest
long means. Moreover, ad hoc exogenous shocks to the economic fundamentals make it hard
to exactly determine when the market would attain the steady state. This sort of imperfection
in the long-run constant return might be complemented by allowing it to change over time.

Fifth, the model reflects more realistic and comprehensive risk aversion mechanism
that decreases with concavity (DARA) as the transitory income/wealth increases. Combined
with HyDARA the model is also easily amenable to testing as even a simple OLS can do
the job.

The model also makes intuitive sense in terms of algebraic signs because if D,= C; in
equilibrium according to Lucas Tree Model, then, if D, goes down, C, goes down as well.
This will lead to an increase in R because D, or C, will be reinvested. Therefore, a decrease
in & will cause 4,.; to increase and Ad,.; as well. Ad,., will also increase because if D falls,
D, will be relatively higher regardless of the level of pay-out. However, in an incomplete
substitution between D, and C,, D, and C, are in a complementary relation, so a drop in C
would mean an increase in D, and an increase in Ri-;. Then, the following should be the
correct signs: Moy = & — pO+1 + Adrey — Acesr. Oi1 has negative sign because if Dy is low,

hr-2 will be high, but tor /.., to be high #,., will have to be relatively low.



IV. Testing the Model

A. Sample and Data Sources

1) Number and Types of Data: The sample will consist of 10~30 years time sexies of
quarterly stock prices“, dividends and consumption. The selected stocks include 1997, 1998,
1999 and 2000 makers of so-called “Dogs of the Dow” stocks. As previously explain.ed in the
Introduction, the Dogs of the Dow™ strategy is nothing more than a dividend yield strategy
for the Dow Jones Industrial Average. The strategy is simple: once each year, adjust -your
portfolio so you own only the 10 highest yielding stocks in the Dow Jones Industrial
Average. These stocks, therefore, rely heavily on the strategy that maximizes dividemd-yield
ratios. Historically these stocks reportedly have done better than the market during th-e down
market and at least as well as the market during the up market.

What [ am trying to do is mainly threefold. First, [ will estimate the paramecters of
the equation (26) for each of these stocks and diagnose how well the HARA assummption
applies by checking if the parameter k>1 as proposed by the model. Second, I will
conduct an out-of-sample testing of the proposed model to measure its ex post
forecasting power and compare its results with the forecast of a completely athemretical
DGP such as ARIMA. Third, for a more practical application I will construct a portfolio
consisting of these stocks and compare the estimated log returns on the portfolio with
the log return on S&P S00 and DJIA. This will test the model’s performance for the short-
run forecasting horizon such as | year.

2) Choice of Time Horizon: The decision on time horizon is fairly constrained by the
availability of data, and the data available® to me mostly date back from 1970 and so me
from 1989 in quarterly form. Therefore, while Campbell & Shiller studies were done over a
fairly long-term market data such as more than 100 years, [ am basically interested in looking

into relatively short to medium-term data within 10~30 year range. Besides, i) long-horizon

*" Quarterly stock price is taken from the monthly closing price of the quarter.

* The tenn ~dogs™ should not be interpreted in negative connotation, but rather as in “top-dog vs. under-dog”
context.

*9 If the data are not readily available for every period. some techniques like “Winsorizing” that truncates

values above and below the upper and lower bounds into the bound vlaues may be used.
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forecasts will inevitably involve high degree of averaging. (7.e. law of large numbers); ii)
there are those securities that have been in existence for relatively short period of time.
3) Data Sources: Stock price and dividend time series are available on-line from such

on-line sources as CRSP, Compustat’®, Yahoo Finance, Marketguide.com, Bigcharts.com,

Bloomberg, Reuters, ...etc. From these sources, returns series are obtained by the

P +D, . )
5 - Consumption Data are also available

-1

theoretically straightforward definition®', R, =

from on-line GDP data series provided by such websites as BEA-NPIA, NBER, FRED, BLS,

and U.S. Census Bureau, Citibase. .. etc.

B. Stationarity Issues

The standard theory of inference in regression requires that all variables be stationary.
Therefore, it is only natural to be concerned about the stationarity of the data when we are
dealing with time series, because if the data series is non-stationary, then the estimation is not
reliable. Normally, we should try to check for the stationarity of all the data series to be used
in this study, which alone would take up a good deal of time and efforts.

Besides, it is not the main objective of this study especially when we can legitimately
assume that all the variables used in the testing of the model are all in the first difference of
the log as they pertain to the rate of change in these variables. Particularly the log return is
defined as the log of the sum of the price and dividend minus log of the previous period
price, which is roughly the first difference of the price. Therefore, we can reasonably assume
that most of these variables already have the stationarity taken care of.

In addition, what supports the stationarity is that the tests already conducted by
Campbell & Shiller confirm this assumption (Campbell & Shiller (1)). They used Phillips-
Perron (1988) test, a modification of the Dickey-Fuller (1981) F-statistic. According to the

Campbell & Shiller’s test, the Hy of unit root is generally not rejected for level values of

3® Compustat data were made availablc to me thanks to the generous and unsparing support from my mentor Dr.
H. Vinod.

3! [ prefer to use theoretical returns over the reported returns data. because corporate earnings report practices
are quite often dubious and fictitious and may contain fabricated data through “creative accounting procedures™

all in an effort to present their perforinance favorably to the public.



price and dividends. However, the exception is that the Hy of unit root can be rejected for
the real dividend on Cowles/S&PS500 stocks at S% level. Therefore, the Hp of unit root is
strongly rejected at least for the growth rates of the stock market variables and for the
log dividend-price ratio.

Empirically dividend series are often found to be relatively stationary as discussed
earlier in the theory part. Also empirically, return is generally considered a mean-reverting
stationary process. So, we may somehow proceed under the assumption that the log
dividend-price ratio and growth rates of real dividends and prices are stationary, so
that log dividends and prices are cointegrated processes.52

To verify this point [ have also taken some measures to check stationarity. The
following is the result of Durbin-Watson (DW hereafter) and Portmanteau Q statistic for the
residuals of the 14 stock portfolio. This residual check for white noise and autocorrelation

among the residuals supports stationarity as suggested by Campbell & Shiller.

ESS = 0.095076063
= 0.000633528
DW 1.998732944
dL & dU @ 5% & 1% 1.598 176 1.46 & 1.63
Q stat 5.61901E-06
v wi 4 df @1% 13.2767

Table 1. Stationarity check by DW and Q-statistic

DW is close to 2 and Q statistic is under critical %* value indicating that this residual series is
not autocorrelated and quite likely white noise.

Finally, the Dickey-Fuller (DF hereafter) test on residuals of the 14 stock portfolio
over 10 year data range (from 1989 through 1999) was not necessary as the variables are in
the 1™ difference form. However, as there can be no absolute guarantee for staionarity, it
would not hurt to double check. The DF on residuals also produced the following results

reaffirming that the residuals are stationary. The test was based on the model:

0
Au, =y, +y.1+du, + C,ZA“,_; + 0, .
=1

*2 Note that this is a conservative assumption in the sense that it leads to greater variability in the rational
forecast uf expected futures dividends. and less cvidence of excess volatility in stock prices, than does the

assumption that dividends and prices arc stationary around a deterministic trend.

29



Ho: &= p—1 = 0 indicates random walk (nonstationarity).

Dickey-Fuller for Residuals

Multiple R 0.715671838
R Square 0.51218618
Adjusted R Square 0.51058679
Standard Error 0.029119016
Observations 613
ANOVA

df SS MS F Significance F
Regression 2 0.543071478 0.271535739 320.23854 8.26991E-96
Residual 610 0.517229443 0.000847917
Total 612 1.06030092

Coefficients Standard Error t Stat P-value

Intercept -0.000260925 0.001176153 -0.221846555 0.824507585
ui(Hy: 5=p-1=0) -1.008799622  0.057264966 -17.616349 1.84396E-56
AUy -0.01504834 0.039632764 -0.379694423 0.704304411

Table 2. Dickey-Fuller test for stationarity of the Portfolio residuals

Coefficient for u,; has a significant r-value rejecting Ho. This indicates that the residuals
(1«;) are stationary, where DF critical t at 1% with 2 df =—4.07. 53
Therefore, judging from the above evidences we can conclude that the variables used in the

testing of my model are cointegrated stationary processes.

C. Regression Results
1. Estimation of Parameters

The following individual regression results of 14 stocks used S&P 500 index to
calculate the market return. They all present significantly high ¢ and F ratios, R?s and very

small standard errors (se hereafter). The table presents ¢ values of estimates based on the Ho:

1
B=0. B, is —y, the coefficient of r,,, and fs is —y¢, the coefficient of ——— . If B5 =0,

C. Cn
then, the model reduces to CRRA-based one. However, it is interesting to note that only in

one in 14 cases, £, was significant, seriously weakening the CRRA assumption. On the

53 ) . . . .
However. estimated u is based on the estimated cointegrating parameter 3. Therefore, DF and ADF 7.and F.
are not quite appropriate. One nceds to find critical values in the following refercnces:

1. Engel & Granger, Econometrica vol. 55 1987, pp. 251-276

~

Engel & Yoo. B.S.. Journal of Econometrics vol. 35, pp. 143-159

Long-run Economic Relationship: Readings in cointegration, Oxford Univ. Press, 1991, Chapter 12.

(92



contrary, in 8 cases out of 14, (s, the addition to the model by assuming HARA, was found to

be significant, strongly supporting the HARA.

Table 3. Regression Results >
Bold italic indicates t significant @ 1% level.

Boldface indicates t significant @ 5% level.

AT&T Caterpillar
Variables Estimates se t Estimates se t
intercept 0.0403504(0.000870401| 46.35840368 0.1153128] 0.00911073 12.6568
St 0.99985908|0.000382716] 2612.537871 0.99292] 0.00767727 129.333
S -0.99316579{0.000378098| -2626.738674 -0.97011 0.00731731 -132.578
Ad;, 0.999206739(0.003371166| 296.3979471 0.99048| 0.00895636 110.589
Font 0.000660775{0.000752846] 0.877702987 0.009528| 0.01513176 0.6296714
(1/C, -1/C._;) -12.28583862{40.48811735] -0.30344307 -19.65477| 435.085036 -0.0451745
F 1879766.061 4214.72
R Square 0.999995957 0.99688
Adjusted R 0.999995425 0.99664
df (k, n-k) 5,38 5,66
Chevron Du Pont
Variables Estimates se t Estimates se t
Intercept 0.041226759|0.005996151 6.8755366{ 0.306364488!| 0.051296728 5.9723983
St 0.9246365(0.035258702 26.224349 0.9472273| 0.130611466 7.2522527
S -0.9169311|0.035297468 -25.977249 -0.8840685| 0.130836721 -6.7570364
Ad 0.9268854{0.035338184 26.229006 1.0518353| 0.136812447 7.6881548
Foue 0.12346752;0.045002076 2.7435961| -0.18682533| 0.186913601| -0.999527744
(L/C,-1/C,_) -5111.457304| 290.331276 -17.605603] -5599.729307| 1834.330507| -3.052737381
F 336.99304 47.74824181
R Square 0.9371512 0.676816893
Adjusted R 0.9343703 0.662642195
df (k, n-k) 5, 113 5, 114
Exxon GM
Variables Estimates se t Estimates se t
Intercept 0.0490737660.000580863 84.484299| 0.183732312] 0.015169703 12.111794
St 0.9982327(0.000637797 1565.1256 1.0040958( 0.026587084| 37.7662989
S -0.989768|0.000632436 -1565.0082 -0.964449| 0.026605491 -36.250014
Ady, 1.0009805| 0.00154995 645.81486 1.0265366| 0.026726874 38.4084066
Tt -1.65844E-05{0.000627697| -0.026420962| -0.06546763| 0.043482762 -1.5055996
(\/C,-1/C_y) -79.8182461|34.40803055 -2.3197563| -1463.58924] 394.5504635 -3.7095109
F 640706.03 473.3979
R Square 0.9999881 0.9544353
Adjusted R 0.9999866 0.9524192
df (k, n-K) 5, 38 5, 113

4 In the earlier version of the paper. [ ran the regression with 3 different softwares, i.e., Excel, SAS, & Gauss,

and cach of them all came up with practically the same estimates.
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Goodyear Int’'l Paper
Variables Estimates se t Estimates se t
Intercept 0.127870131/0.006337964 20.175268| 0.154546024| 0.006565884 23.537733
St 1.0025474(0.008233144 121.76969 0.9714867| 0.01181025 82.25793
S -0.9779884{0.008266476 -118.30778 -0.9393902| 0.011936918 -78.696213
Ady 1.0028502| 0.010696469 93.755254 0.9790171] 0.015414652 63.512109
Fone -0.020614447{0.015410053 -1.3377272| 0.026371506| 0.017768714| 1.48415389
(L/C,-1/C,.}) -273.3185545|141.9836115] -1.92500072| -644.1647136| 155.5426339 -4.1414029
F 3880.1303 2467.4407
R Square 0.9941582 0.9908443
Adjusted R 0.993902 0.9904427
df (k, n-k) 5 114 5, 113
JP MorgEn Kodak
Variables Estimates se t Estimates se t
Intercept 0.065094262{0.001377322 47.261481} 0.158195352} 0.007702217 20.538938
St 0.9998868|0.000748677 1335.5378 0.9920884| 0.01330993 74.537461
& -0.9879338{0.000775753 -1273.51583 -0.9602367| 0.013391195 -71.706572
Ad 0.9989132|0.001785735 559.38503 1.009159| 0.013732946 73.484524
P -0.000701589|0.001291558] -0.543210959 -0.004624746| 0.021160858] -0.21855193
(LC,-1/C,.)) -42.71987096{45.69379179| -0.934916305| 407.7764428| 144.9531625| 2.813160029
F 727009.75 1624.1684
R Square 0.9999873 0.9908443
Adjusted R 0.999986 0.9904427
df (k, n-k) 5, 46 5,113
M Philip Morris
Variables Estimates se t Estimates se t
Intercept 0.157801589/0.005176658 30.483295| 0.432595599| 0.026440296 16.361224
St 0.994659(0.012415152 80.116537 0.914615| 0.06563431 13.935014
S -0.9619646{0.012457401 -77.220334| -0.790331256| 0.066741719 -11.841638
Ady, 1.0011354/0.015526984 64.477131 0.9386661| 0.076546639 12.262669
P 0.013817702|0.016312316| 0.847071727| 0.243161418| 0.115281191 2.1092896
(L/C,-1/C,._y) 134.2197]|107.7232327| 1.245967993| -6732.27522| 1111.628563 -6.0562273
F 2570.8715 266.79974
R Square 0.9913623 0.9219073
Adjusted R 0.9909766 0.9184519
df (k, n-k) 5, 112 5,113
SBC Texaco
Variables Estimates se t Estimates se t
Intercept 0.157801589|0.005176658 30.483295| 0.076039167( 0.008474924 8.9722535
St 0.994659(0.012415152 80.116537 0.9733498| 0.042060391 23.141721
& -0.9619646|0.012457401 -77.220334 -0.9647292| 0.041899541 -23.024816
Ady, 1.0011354|0.015526984 64.477131 0.9726338| 0.042093901 23.106288
It 0.013817702(0.016312316] 0.847071727| -0.00295811| 0.047307923| -0.062528848
(L/C,-1/C,._,) 134.21971107.7232327| 1.245967993| -3511.542915| 354.7763682 -9.8979054
F 2570.8715 146.716
R Square 0.9913623 0.8665218
Adjusted R 0.9909766 0.8606157
df (k, n-k) 5, 53 5,113

32
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With regard to the prescribed parameter values of ; and s, the Hy for £; and S; are

not 0, but 1 as specified by the model. Therefore, we need additional test statistic for 8; and

[s, because Ho: f,=05=1. The new adjusted t-statistic is "=(—1)/se;. Accordingly the new ¢-

statistic for 8, and £; are as follows.

Table 4. Adjusted Regression Statistic for 8, and Ss.

AT&T Caterpillar

Variables Estimates se t Estimates se t
St 0.99985908 0.000382716 -0.368210277] 0.992920628 0.007677268 -0.922121273
Ad, 0.999206739 0.003371166 -0.235307496] 0.990476779 0.008956358 -1.063291606

Chevron Du Pont

Variables Estimates se t Estimates se t
St 0.9246365 0.035258702 -2.137443971 0.9472273 0.130611466 -0.404043394
A4d, 0.9268854 0.035338184 -2.068997094 1.0518353 0.136812447 0.378878539

Exxon GM

Variables Estimates se t Estimates se t
St 0.9982327 0.000637797 -2.77094436 1.0040958 0.026587084 0.154052246
Ad, 1.0009805 0.00154995 0.632601052 1.0265366 0.026726874 0.992880799

Goodyear Int’l Paper

Variables Estimates se t Estimates se t
St 1.0025474 0.008233144 0.309407925 0.9714867 0.01181025 -2.414284202
Ad,; 1.0028502 0.010696469 0.266461764 0.9790171 0.015414652 -1.36123086

JP Morgan Kodak

Variables Estimates se t Estimates se t
St 0.9998868 0.000748677 -0.15120005 0.9920884 0.01330993 -0.594413344
Ad, 0.9989132 0.001785735 -0.60860094 1.009159 0.013732946 0.666936286

3M Philip Morris

Variables Estimates se t Estimates se t
St 0.994659 0.012415152 -0.43020013 0.914615 0.06563431 -1.300920205
Ad, 1.0011354 0.015526984 0.073124311 0.9386661 (.076546639 -0.801261829

SBC Texaco

Variables Estimates se t Estimates se t
St 0.994659 0.012415152 -0.43020013 0.9733498 0.042060391 -0.633617505
Ad, 1.0011354 0.015526984 0.073124311 0.9726338 0.042093901 -0.650122686

This time the low ¢ values for £; and £; confirm our adjusted Hp: £,=£;=0 (that adjusted S,

and f; are not significantly different from zero.) which confirms our original Hy except for

Exxon and International Paper. *°

[ % t critical @ 1% =2.617 for 120 df & 2.576 for infinite df

W)
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2. Diagnosis HARA
Next, we proceed to the main objective of this paper — to diagnose if HARA is the

correct assumption for risk aversion mechanism. The following table summarizes parameters

to diagnose HARA. As long as x>0, we have strictly concave consumption required by the

economic theory and will exhibit 3 cases of HARA: i) quadratic utility function if k=0, i1)

CARA if k=1, iii)) HyDARA if x>1. However, the k estimates are in their raw values and

must not be taken as they are, for their statistical significance can only be determined by the

appropriate test statistic, which follows the table.

Table 5. Raw Estimates of
AT&T i>1 — HyDARA
5=, 0.99985908 0.999206739 ;=1 —, CARA

=p ¢ -0.993165791 x=0 — quadratic U fn
b=y 0.000660775 s=(14)1y -1512.373825
L=B. ¢ -12.28583862 g=p /5, -18593.06659
Caterpillar 1 - HyDARA
5i=0; 0.992920628 0990476779 x=1 — CARA
B-=—p -0.970113558 x=0 — quadratic U fn
Bi=—y 0.009528039 k=(1+4)/y -0.009614784
Bs=B.*¢ -19.65477045 ¢=ByP: 0.009619649
Chevron i>1 - HyDARA
Bi=B; 0.9246365 0.9268854 ;=1 —, CARA
L=p -0.9169311 k=0 — quadratic U fn
L=y 0.12346752 ,=(14)/y -7.099296074
Bs=P.*¢ -5111.457304 g=p /5, -41399.20607

t critical @ 5% =1.980 for 120 df & 1.960 for infinite df

F critical @1%=3.17 for n-k=120, k=3 & 3.02 for n-k = infinite, k=5
t critical @ 1% =2.704 for 40 df & 2.576 for infinite df

t critical @ 5% =2.021 for 40 df & 1.960 for infinite df

F critical @1%=3.51 for n-k=4{}, k=5 & 3.02 for n-k = infinite, k=5

> The estimates of parameter p from Campbell & Shiller (1) range from 0.937 for the Cowles/S&P annual data

to 0.933 for the NYSE annual data, which are closely in line with the range of p for the quarterly 14 stocks

which mostly run from 0.910 to 0.993.




Du Pont

k>1 —»> HyDARA

Bi=0: 0.89472273 1.0518353 =1 5, CARA
B=p -0.8840685 k=0 — quadratic U fn
B=y -0.18682533 K=(1+1ly 6.352593248
=0,%p -5599.729307 g=p./3, 29973.07328
Exxon K>1 — HyDARA
Bi=P; 0.9982327 1.0009805 ;=1 —» CARA
=p -0.889768 k=0 — quadratic U fn
Be=y -1.66E-05 K=(1+0)ly 60298.6291
=,%¢ -79.8182461 g=p 13, 4812850.999
GM k>1 - HyDARA
B=B; 1.0040958 1.0265366 x=1 —» CARA
B=p -0.964449 x=0 — quadratic U fn
Bi=y -0.06546763 K=(1+1)y 0.025850613
B=B.*¢ -1463.58924 ¢=PB/B. -0.063775252
Goodyear K>1 — HyDARA
B1=0; 1.0025474 1.0028502 =1 _, CARA
B-=—p -0.9779884 k=0 — quadratic U fn
Bi=—y -0.020614447 y=(14)1y 0.002842099
Bs=B.*¢ -273.3185545 =B+/B, -0.020555859
Int’i Paper K>1 — HyDARA
B1=B; 0.9714867 0.9790171 x=1 — CARA
B-=p -0.9393902 k=0 — quadratic U fn
Bi=—y 0.026371506 x=(14p)/y -0.021432618
Bs=B.*¢ -644.1647136 &=B/B; 0.026936716
JP Morgan k>1 — HyDARA
B1=; 0.9998868 0.9989132 ,=1 —, CARA
B=p -0.9879338 x=0 — quadratic U fn
L=y -0.000701589 x=(14)1y -0.001087982
Bs=B.*P -42.71987096 g=p 3, -0.000702352
Kodak i>1 — HyDARA
Br=5; 0.9920884 1.009159 =1 — CARA
=—p -0.9602367 x=0 — quadratic U fn
B~y -0.004624746 x=(1+p)/y 0.009075874
Bs=B.*¢ 407.7764428 =By -0.004582772

(V3]
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M ik>1 — HyDARA

B1=B; 0.994659 1.0011354 ;=1 _, CARA

p=—p -0.9619646 k=0 — quadratic U fn

Bi=—y 0.013817702 =(1+p)ly 0.001134112
Bs=B:*¢ 134.2197 g=p 5. 0.013802031
Philip Morris x>1 —> HyDARA

Bi=P; 0.914615 0.9386661 x=1 _, CARA

[-=—p -0.790331256 x=0 — quadratic U fn

L=y 0.243161418 x=(1+3)/y -0.065341552
B=B.*d -6732.27522 g=p 1 0.259049962
S8C i>1 — HyDARA

Bi1=B; 0.994659 1.0011354 ,=1 _, CARA

B=p -0.9619646 k=0 — quadratic U fn

L=y 0.013817702 g=(1+p)1y 23.53951069
Be=B ¢ 134.2197 gep g, 299992.7325
Texaco &>1 — HyDARA

Bi=P; 0.9733498 0.9726338 =1 — CARA

B-=—p -0.9647292 k=0 — quadratic U fn

B~y -0.00295811 K=(1+)ly -0.02813618
Bs=B:*¢ -3511.542915 g=pyp, -0.00304134

We need a test statistic to check how significant these k estimates are, and as Kk is a

36

nonlinear parameter, delta method is the best choice. The ¢ statistic for kappa was calculated

according to the following steps at the top of the table and the results are shown below.
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Table 6. k Statistic

Company oy = (—1/}'2)207 ox tx =(x-1)/ ox

AT&T 0.000660775 3466080579| 58873.42847 -0.0257055
Caterpillar 0.015131763 1836011.838] 1354.995143] -0.077456657
Chevron 0.045002076 193.6518495] 13.91588479 -0.582018
Du Pont 0.186913601 153.4256148| 12.38650939 0.4321309
Exxon 0.000627697 8.29757E+15] 91091006.03 0.0006619
GM 0.043482762 2367.067515| 48.65251808]| 0.313955473
Goodyear 0.015410053 85333.0712]| 292.1182487] 0.166061755
Int'l Paper 0.017768714 36738.0643| 191.6717619] -0.197836734
JP Morgan 0.001291558 5330682653| 73011.52411| 0.019522068
Kodak 0.021160858 46257454.59| 6801.283304| 0.031792249
3M 0.016312316 447478.6684| 668.9384639] -0.10818773
Philip Morris | 0.115281191 32.97461893| 5.742353083| -0.716168871
SBC Comm 0.016312316 447478.6684| 668.9384639] -0.10818773
Texaco 0.047307923 617840826.6] 24856.40414] 0.013600265

37

Since yis insignificant in 13 out of 14 cases, the relevance of ryy, is seriously in doubt.

However, the y¢, significant in 8 out of 14 cases, shows that HARA assumption is needed.

The delta method gives rather a wide confidence interval for k. It suggests that in future work

we should use a bootstrap for this case. Hence, the test of Hp: k=1 or x=0 (adjusted) would

also have low power. However, we have enough evidence based on statistically insignificant

- 1+
y and statistically significant x that ¥ <1 and x = =7 > 1. Hence, HyDARA assumption

is the most appropriate and flexible approach. The traditional assumption implied in
CRRA that A=1 and B=is clearly rejected as HyDARA holds. Also, CARA based on the

assumption that k=1 is rejected due to high standard error. Therefore, the flexibility

introduced here seems worth the effort.

Y
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D. Precautionary Check for Multicollinearity

The regression results all show very high R*s, which would normally make one
suspicious of multicollinearity. So, [ have checked correlation between the regressors, run
auxiliary regressions, checked condition numbers, and run a demeaned regression. The
results show that the correlation between &, and &, for each of the individual stocks is high
as can be reasonably expected.

Table 7. Correlation Coefficients between &.1 &&

Company| AT&T CAT Chev DP EBExxon GM GT IP JPM Kodak 3M PhMo SBC Texaco

p(61,6)| 0.872 0.926 0.953 0.98 0.981 0.858 0.977 0.991 0.87 0.7815 0.984 0.985 0.987 0.631

The hold face indicates that o>0.8.

The following correlation coefficient matrix of the 14 companies pooled also shows
that the only possible source of multicollinearity would be the overall close correlation
between &;-; and 8; which is slightly above the general criterion of 0.8. However, this close
correlation is unavoidable because of the way the model is set up, and also as they are the
lead and lag series of the same variable. Therefore, this close correlation wouldn’t render any
adverse effects on the estimation as the estimates are still best linear unbiased estimator

(BLUE hereafter).

Table 8. Correlation Matrix of Portfolio

Correlation Matrix h;, St & Ad, P (V/C.-1/C.)
Il,', 1
St 0.2296 1
G 0.1154 0.8871 1
Ad, 0.065 -0.2518 0.1978 1
P 0.1764 0.0103 -0.0028 0.042272 1
(1/C,-1/Cy) 0.0166 -0.2333 -0.237 0.0158942  -0.2453106 1

Also, auxiliary regressions for individual stocks show only 6 instances with R;?
greater than the overall R2, which, according to Klein’s rule of thumb,” affirms that
multicollinearity is not a general phenomenon across the entire sample. Therefore, it is

evident that multicollinearity is not significant for the most part of the sample.

7 Auxiliary Regression

R,:zl-.tlx}--xk /(k - 2) - F)Fm“cd ,
(=R, ) l(n—k+1)

xl-x2x3--

Regress X, onthe rest of X's and if R, =

then multicollinearity. Or if R\ > R%veran. then multicollinearity. (Klein’s rule of thumb)




Table 9. Auxiliary Regression

Dependent St & Ady Pt (VC.-1/C) Overall R*
Variabie

Ri" AT&T 0.9907 0.9935634 09858 0.0682 0.0255 0.999998596
R;” Caterpillar 0.96713 0.9615884 0.7762 0.1254 0.383 0.996907343
R;* Chevron 0.9997 0.99971 0.997 0.0759 NA 0.936
R;" Du Pont 0.9951 0.99513 0.873 0.1146 NA 0.741080629
R;” Exxon 0.96516 0.9655074 0.3201 0.2419 NA 0.999988145
R GM 0.9896 0.98962 0.99 0.99 NA 0.953581806
Ri° Goodyear 0.98387 0.9839325 0.6347 0.1025 NA 0.994077455
R;* Int'l Paper 0.99023 0.9905932 0.9902 0.9902 NA 0.990831283
R JP Morgan 0.83939 0.8410203 0.1561 0.2577 NA 0.999987296
R;" Kodak 0.98286 0.9831643 0.961 0.1334 NA 0.986280335
R 3M 0.99013 0.9904491 0.6524 0.2611 NA 0.991348158
R;* Philip Morris 0.993 0.99323 0.7564 0.1407 NA 0.920452678
R;" SBC 0.9959 0.99594 0.8432 0.2498 NA 0.898504837
R;° Texaco 0.9991 0.99905 0.999 0.0284 NA 0.867217193
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Bold face indicates that R;” > overall R". 6 out of 14 stocks produce R;" > overall R®. This would indicate
that these 6 stocks show some degree of multicollinearity. Rf for (L/C,—L/C,;) can largely be ignored due to
the insignificance of their low values.

This conclusion is also supported by the following condition number check. Defined

Amax ) - . .
k= 1/ i where A = eigenvalue, 10<k<30 indicates moderate to strong multicollinearity
tmin

and 30<k indicates severe multicollinearity.

Table 10. Condition Number

Company AT&T Caterpillar Chevron Du Pont Exxon GM Goodyear Int'l Paper
eigenva1l 0.109112 0.016919 8.52E-05 0.00242 0.017438 0.004555 0.007993 0.004794
eigenva2 0.585961 0.474232 0.908056 0.260104 0.522661 0.326481 0.389371 0.346003
eigenva3l 0.893555 0.788739 0.880586 0.997372 0.705647 0.999953 1.004198 0.958288
eigenva4 1.395973 1.240404 1.157944 1.023536 1.520979 1.138159 1.023292 1.030051
eigenvab 2.015399 2.479707 1.953329 2.716568 2.233274 2.530853 2.575145 2.660864
=L/ Amia) 4.297773 12.10634 151.4506 33.50591 11.31664 23.57257 17.94904 23.55855
Company JP Morgan Kodak 3M Phil Morris SBC Texaco Portfolio

eigenvail 0.080784 0.007042 0.005346 0.003416 0.002008 0.000345 0.01003
eigenva2 0.648579 0.703968 0.553255 0.339024 0.353148 0.76256 0.703573
eigenva3l 0.938968 0.994185 1.001066 0.995516 1.021575 1.002612 1.091521
eigenva4 1.084368 1.223972 1.021912 1.010779 1.042008 1.38041 1.188357
eigenvas 2.247302 2.070834 2418421 2651264 2.581261 1.854073 2.006518
=(Aasad Amin) 5274354 17.14805 21.27009 27.85729 35.84974 73.28557 14.14362

From the above result the condition number indicates that the multicollinearity is

severe (k>30) only in 4 cases. Therefore, the multicollinearity is not a general
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phenomenon across the entire sample, and certainly not in the portfolio case. Then, a

separate remedy - ridge regression - is in order for these 4 stocks. The following are the result

of Hoerl, Kennard & Baldwin®® estimates of ridge regression by Gauss.>

Table 11. R@e Regession Results

Chevron HKB-noniterative Ridge Estimator
bias parameter 7.7E-07
5:!—1 (Sr Ad,‘, Tme (I/Cl -1/ Cl—l)
Est 0.95135901 -0.94366194 0.95355504 0.062304414 -4943.8819
Std. Err. 0.031344282 0.031384813 0.031428402 0.027602577 285.88833
HKB-iterative Ridge Estimator
bias parameter 2.2E-10
Est 0.95654307 -0.94885269 0.95874563 0.061071492 -4941.8925
Std. Err. 0.031515827 0.03155658 0.031599921 0.027613647 285.89135
Du Pont HKB-noniterative Ridge Estimator
bias parameter 0.000110455
Gt S Ad Fme (VC,-1/C,,)
Est 0.994991 -0.92748265 1.095589 -0.50980277 -5251.4528
Std. Err. 0.09224507 0.092437987 0.098615592 0.096001951 1626.963
HKB-iterative Ridge Estimator
bias parameter 0.000121728
Est 0.99072101 -0.92320395 1.0913308  -0.5083978 -5247.1482
Std. Err. 0.091837469 0.092029498 0.098236631 0.095958754 1626.8719
SBC HKB-noniterative Ridge Estimator
bias parameter 0.000630533
[~ S Ad, Pt (LC,-1/C,,)
Est 0.84400845 -0.86377713 0.74431066 -0.23874042 -10402.341
Std. Err. 0.14588019 0.14796447 0.17851535 0.17007192 13268.183
HKB-iterative Ridge Estimator
bias parameter 0.000938238
Est 0.79394156 -0.81298021 0.69539839 -0.21393848 -10513.855
Std. Err. 0.13728515 0.13924262 0.17185623 0.16825098 13261.826
Texaco HKB-noniterative Ridge Estimator
bias parameter 3.0E-06
5::—-1 5:1 Adit Pt (]-/Cr 'I/Ct-l)
Est 0.95912871 -0.95059942 0.9584117 0.024856601 -3516.2241
Std. Err. 0.03973242 0.039612156 0.039781682 0.030846887 347.55476
HKB-iterative Ridge Estimator
bias parameter 3.0E-06
Est 0.95898713 -0.95045827 0.95826997 0.024874491 -3516.1597
Std. Err. 0.039726542 0.039606296 0.039775799 0.030846764 347.5546

5 Amemiya, 4dvanced Econometrics. Harvard. 1985, pp 60~69.

%% Gauss programs are provided in the Appendix.
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Table 12. Comparison btwn OLS Estimator & Ridge Estimator
Chevron Coefficients(OLS) Coefficients(ridge) se(OLS) se(ridge)
St 0.9246365 0.95135901 0.035258702 0.031344282
& -0.9169311 -0.94366194 0.035297468 0.031384813
Ady, 0.9268854 0.95355504 0.035338184 0.031428402
Pt 0.12346752 0.062304414 0.045002076 0.0276G2577
(VC,-1/C.y) -5111.457304 -4943.8819 290.331276 285.88833
Ridge se arc not significantly < OLS se.
Du Pont Coefficients(OLS) Coefficients(ridge) se(OLS) se(ridge)
St 0.9472273 0.994991 0.130611466 0.09224507
& -0.8840685 -0.92748265 0.130836721 0.092437987
Ady, 1.0518353 1.095589 0.136812447 0.098615592
Frne -0.18682533 -0.50980277 0.186913601 0.096001951
(L/C,-V/C._p) -5599.729307 -5251.4528 1834.330507 1626.963
Boldface indicate ridge se < OLS se.
SBC Coefficients(OLS) Coefficients(ridge) se(OLS) se(ridge)
St 0.96918062 0.84400845 0.16737636 0.14588019
S -0.99077298 -0.86377713 0.16977691 0.14796447
Ady 0.86660971 0.74431066 0.19574922 0.17851535
et -0.30077081 -0.23874042 0.17497802 0.17007192
(V/C,-VC,_p) -10121.552 -10402.341 13281.579 13268.183
Ridge se are not significantly < OLS se.
Texaco Coefficients(OLS) Coefficients(ridge) se(OLS) se(ridge)
St 0.9733498 0.95912871 0.042060391 0.039726542
& -0.9647292 -0.95059942 0.041899541 0.039612156
Ady, 0.9726338 0.9584117 0.042093901 0.039781682
Pt -0.00295811 0.024856601 0.047307923 0.030846887
(L/C, -1/C,y) -3511.542915 -3516.2241 354.7763682 347.55476

Ridge se are not significantly < OLS sc.

Only one of the 4 stocks came up with significantly smaller se than the OLS

estimates. The rest of the sample produced se not significantly smaller than OLS se. This

conforms to the Monte Carlo simulation report by R. Mittelhammer, G. Judge & D. Miller

that ridge regression generally produces smaller mean squared error (MSE hereafter) than

OLS when condition number 4(x'x)>10.% However, most of the ridge se’s are not

significantly smaller than the model se’s, which attests to the efficiency of the model. One

should also note that ridge is not a completely satisfactory remedy as even the ridge generally

gives slightly biased estimates only with a smaller variance and MSE.

% Mittelhammer. R.. Judge, G. & Miller. D.. Economietric Foundation. Cambridge University Press, 2000: pp

550~521
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Another possible action to take would be detrending. If correlation within the data
series itself or multicollinearity is the most probable cause, then detrending might correct the
problem. The rationale is that if the correlation between &;and &, is gotten rid of, then
the main source of multicollinearity is out of the way. With the main source of the
problem out of the way the multicollinearity is taken care of. Of course, this is only under
the assumption that return is a mean-reverting stationary process in the long run and
therefore, demeaning is effectively detrending. The demeaned regression of the 14 stocks

pooled together gives the following result.

Table 13. Demeaned Regression

Demeaned regression
Multiple R 0.97
R Square 0.941
Adjusted R Square 0.9405
Standard Error 0.0298
Observations 615
ANOVA
dar SS MS F Significance F
Regression 5 8.6067 1.7213394 1940.67 0
Residual 609 0.5402 0.000887
Total 614 9.1469
Coefficients Standard Error t Stat P-value
Intercept 2E-15 0.001 1.366E-12 1
S 1.007 0.011 95.638 0
S -0.98 0.011 -92.4335 0
Ady—t 1.024 0.011 91.505 0]
Fre— -0.0334 0.013 -2.58874 0.009863
(L/C,-V/C_)—u 399.47 1128.7 0.3539289 0.7235147

It is not surprising to see that even the demeaned regression still gives quite consistent
estimates for ;=/; and also for £ as in the normal regressions. Besides, its standard errors
and £ and F statistics, and R*are also still quite significant. Theoretically the demeaned
regression statistic should not be different from normal regression statistic as demeaning
doesn’t affect the properties of the sample distribution. This will be verified in the portfolio
section to follow. Therefore, it may be considered, overall, a good evidence for non-
significant multicollinearity. The plot of this regression is provided in the Appendix.

On the other hand, what makes multicollinearity less of our concern is that all of the
regression results show significant ¢ ratios, very small standard errors, and very high F

ratios. Therefore, the estimators are still BLUE. Although there may be slight
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multicollinearity, it should not adversely affect the model. Furthermore, £, and £; are always
one as prescribed by the model (5;,=04;=1 from h, =6, , — pd, + Ad, — y Ac, + k).

This may be owing to the fact that this model is a straightforward extension of

Gordon growth model that includes return, price and dividend all within itself. So, it may

D D
R=— h
-G as P+G of the

proposed model. However, the proposed model is a sound loglinearization of the return

seem tautological to rewrite the present value relation P =

equation above having the growth rate of dividend and market return for G term. Therefore,
it is clear that there is no structural source of multicollinearity except for o, and &, for
which the close correlation is not surprising due to lag and lead nature of these
variables. This also supports the largely held consensus that multicollinearity is mostly data
problem, not the model specificaiton problem.

Even if the multicollinearity were severe, completely satisfactory cure is not
available, as the remedy will inevitably involve modifying the model by dropping one or
more variables. This certainly is not a desirable solution when the model is theoretically
complete. Any arbitrary variable modification will result in specification error. Even the
ridge regression generally gives slightly biased estimates only with a smaller variance and
MSE and therefore, it is not a completely satisfactory solution, either. Besides, all of the
Excel, SAS and Gauss regression results already indicated that R? are extremely high, F
statistics are also high and ¢ ratios are generally high as well. This doesn’t fit the strong

criterion for multicollinearity.
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A. Out-of-Sample Testing

Our next concern is how good the model is in terms of explaining or forecasting ex
post our variable of interest. For this one needs some other forecasting method for
comparison. Then, one can apply root mean squared error (RMSE hereafter) to compare

1S, .
—Ze,.‘ . The other forecasting

which model produces smaller errors, where RMSE = T
i=l

method of choice had better be a pure atheoretical data generating process such as
ARMA(p, q) to highlight the difference between the structural models and pure DGP.
1. Out-of-Sample Forecast
The following are 5-quarter out-of-sample forecasts by the Model followed by

ARMA. The results are self-explanatory and the more straightforward comparison of these

two sets of forecasts follows in the next section.

Table 14. The Model Tested by SAS

Quarter AT&T Out-of-Sample Forecast Error ESS RMSE
Mar-00 0.10936467 0.000962039 9.25519E-07 0.000805217
Dec-99 0.16348851 0.000563746 3.1781E-07
Sep-99 -0.23937327 0.000277456 7.69817E-08
Jun-99 0.05090522 0.000862836 7.44487E-07
Mar-99 0.05569408 0.000727117 5.28699E-07

Quarter CAT Out-of-Sample Forecast Error ESS RMSE
Mar-00 -0.27803491  -0.000873598 7.63173E-07 0.008411008
Dec-99 -0.14302672 0.00349676 1.22273E-05
Sep-99 -0.08774853 0.008740785 7.64013E-05
Jun-99 0.26447959 0.012574975 0.00015813
Mar-99 0.00583705 0.005954693 3.54584E-05

Quarter Chevron Out-of-Sample  Forecast Error ESS RMSE
Mar-00 0.0910305 -0.010656958 0.000113571 0.018878357
Dec-99 0.01997516  -0.029709422 0.00088265
Sep-99 -0.04681874  -0.008520388 7.2597E-05
Jun-99 0.09788597 -0.016254774 0.000264218
Mar-99 0.08210223 -0.00961947 9.25342E-05

Quarter Du Pont Out-of-Sample  Forecast Error ESS RMSE
Mar-00 -0.21762379 0.102897 0.010587793 0.128729533
Dec-99 0.03734811  -0.057657654 0.003324405
Sep-99 -0.12009421 0.176741096 0.031237415
Jun-99 0.12467203 0.14438853 0.020848048
Mar-99 0.06701182 -0.01695613 0.00028751
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Quarter Exxon Out-of-Sample Forecast Error ESS RMSE
Mar-00 -0.02136585 0.000256723 6.59069E-08 0.000425439
Dec-99 0.06936549 0.000349524 1.22167E-07
Sep-99 -0.00461796 0.000428906  1.8396E-07
Jun-99 0.0937462 0.000572548 3.27811E-07
Mar-99 -0.02993606 0.000155392 2.41468E-08

Quarter GM Out-of-Sample Forecast Error ESS RMSE
Mar-00 0.11635737 0.026381605 0.000695989 0.069199542
Dec-99 0.1302923 0.027919487 0.000779498
Sep-99 -0.15645274 0.124992829 0.015623207
Jun-99 0.15839957 -0.038598167 0.001489819
Mar-99 0.18403603 0.023786421 0.000565794

Quarter GT Out-of-Sample Forecast Error ESS RMSE
Mar-00 -0.5160664 -0.004235512 1.79396E-05 0.005079097
Dec-99 -0.18931773 0.000550891 3.03481E-07
Sep-99 0.16954863 0.006528967 4.26274E-05
Jun-99 -0.00323235 0.003184462 1.01408E-05
Mar-99 -0.01476612 0.005672535 3.21777E-05

Quarter IP Out-of-Sample Forecast Error ESS RMSE
Mar-00 -0.27522215 0.009044054 8.17949E-05 0.02325495
Dec-99 0.14228424 0.027332803 0.000747082
Sep-99 -0.05625828 0.02160043 0.000466579
Jun-99 0.1590263 0.025659951 0.000658433
Mar-99 -0.06282653 0.014466584 0.000209282

Quarter JPM Out-of-Sample Forecast Error ESS RMSE
Mar-00 0.05465801 0.001129461 1.27568E-06 0.001103416
Dec-99 0.11755114 0.000918638 8.43895E-07
Sep-99 -0.19028279 0.000368081 1.35483E-07
Jun-99 0.14316175 0.001426238 2.03416E-06
Mar-99 0.17634497 0.000762162 5.808SE-07

Quarter Kodak Out-of-Sample Forecast Error ESS RMSE
Mar-00 -0.18781385 0.004833486 2.33626E-05 0.011757591
Dec-99 -0.12925087 0.010413954 0.00010845
Sep-99 0.10726909 0.014448323 0.000208754
Jun-99 0.05997977 0.011811067 0.000139501
Mar-99 -0.11482363 0.008537882 7.28954E-05

Quarter 3M Out-of-Sample Forecast Error ESS RMSE
Mar-00 0.01195853 0.017992334 0.000323724 0.017417936
Dec-99 0.0933969 0.017991708 0.000323702
Sep-99 0.199495 0.019415235 0.000376951
Jun-99 0.00057119 0.009519369 9.06184E-05
Mar-99 -0.0304927 0.009926864 9.85426E-05




Quarter | Phil Morris Out-of-Sampie Forecast Error ESS RMSE
Mar-00 -0.09253272 0.03659502 0.001339196 0.088943441
Dec-99 -0.35777985 0.001429837 2.04443E-06
Sep-99 -0.23770633 0.103272877 0.010665287
Jun-99 0.03641413 0.118428164 0.01402523
Mar-99 -0.46965707 0.074913188 0.005611986

Quarter SBC Out-of-Sample Forecast Error ESS RMSE
Mar-00 -0.12727803 0.085897215 0.007378332 0.098330159
Dec-99 -0.20706838 0.093828298 0.00880375
Sep-99 0.12812864 0.087191552 0.007602367
Jun-99 -0.21013176 0.091647899 0.008399337
Mar-99 0.11809331 0.080569819 0.006491496

Quarter Texaco Out-of-Sample Forecast Error ESS RMSE
Mar-00 0.04774353  -0.041030387 0.001683493 0.044173777
Dec-99 -0.09051522  -0.043920153 0.00192898
Sep-99 0.06584253  -0.039186796 0.001535605
Jun-99 0.1463111  -0.037413414 0.001399764
Mar-99 0.12180428 -0.03546053 0.001257449

The last row of the ARMA below explains the type of process and the number of lags used.

Table 15. ARMA Out-of-Sample Tested by SAS
Quarter AT&T Forecast Std Error ESS RMSE
Mar-00 0.08037 0.0466 0.1327} 0.001140652
Dec-99 -0.0097 0.0486 0.1321| 0.003402887
Sep-99 -0.0553 0.0156 0.1278| 0.00503236
Jun-99 0.08163 -0.0327 0.1272] 0.013071622
Mar-99 0.08248 -0.0186 0.111] 0.010217725
e p=(1,2); indicates AR w/ spikes at 1,2 lags. 0.032865245] 0.081074343
Quarter CAT Forecast Std Error ESS RMSE
Mar-00 -0.2789 0.047 0.1414{ 0.106216354
Dec-99 -0.1395 0.0427 0.1405] 0.033207758
Sep-99 -0.079 0.0203 0.1405| 0.009862027
Jun-99 0.27705 0.0279 0.1404| 0.062077996
Mar-99 0.01179 0.0358 0.1404] 0.000576396
e g=(1,4,8); indicates MA w/ spikes at 1,4,8 lags. 0.211940531] 0.20588372
Quarter Chevron Forecast Std Error ESS RMSE
Mar-00 0.08037 0.0992 0.1289f 0.000354435
Dec-99 -0.0097 0.0898 0.1289] 0.00990707
Sep-99 -0.0553 0.1005 0.1289] 0.024285833
Jun-99 0.08163 0.1327 0.1271] 0.002608023
Mar-99 0.08248 0.2285 0.1199] 0.021321034
e p=(1,2,19); indicates AR w/ spikes at _1.2,19 lags. | 0.058476395| 0.108144714
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Quarter Du Pont Std Error ESS RMSE
Mar-00 -0.1147 -0.0456 0.1552] 0.004778513
Dec-99 -0.0203 -0.0307 0.1552| 0.000107962
Sep-99 0.05665 0.0191 0.1686] 0.001409768
Jun-99 0.26906 -0.0521 0.1686{ 0.103144106
Mar-99 0.05006 0.0213 0.1686] 0.00082689
e q=(2,5); indicates MA w/ spikes at_2, 5 lags. 0.110267238] 0.148504033
Quarter GM Std Error ESS RMSE
Mar-00 0.14274 0.1037 0.1413]| 0.001524041
Dec-99 0.15821 0.1388 0.139] 0.000376818
Sep-99 -0.0315 0.1604 0.1373| 0.036810226
Jun-99 0.1198 0.1332 0.1373| 0.000179522
Mar-99 0.20782 0.1086 0.1373] 0.009845094
e q=(3,4); indicates MA w/ spikes at 3, 4 lags. 0.0487357011 0.098727606
Quarter GT Std Error ESS RMSE
Mar-00 -0.1774 0.0011 0.2021} 0.031867435
Dec-99 -0.5203 0.0011 0.2021] 0.271859956
Sep-99 -0.1888 0.0011 0.2021] 0.036049418
Jun-99 0.17608 0.0011 0.2021] 0.030617159
Mar-99 -5E-05 0.1436 0.1429] 0.020634716
e g=(1) indicates MA w/ spikes at_1st lag. 0.391028684] 0.279652886
Quarter JPM Std Error ESS RMSE
Mar-00 0.05579 -0.0028 0.1864] 0.003432492
Dec-99 0.11847 -0.0028 0.1864} 0.014706358
Sep-99 -0.1899 -0.0028 0.1864] 0.035011915
Jun-99 0.14459 -0.0028 0.1864| 0.021723219
Mar-99 0.17711 -0.1226 0.1424] 0.089824366
e g=(1) indicates MA w/ spikes at _1st lag. 0.164698349f 0.181492892
Quarter Kodak Std Error ESS RMSE
Mar-00 -0.183 0.0208 0.1622] 0.041526438
Dec-99 -0.1188 0.0039 0.1618] 0.015064349
Sep-99 0.12172 -0.0647 0.1526] 0.034751451
Jun-99 0.07179 0.0795 0.149] 5.94312E-05
Mar-99 -0.1063 0.0038 0.1318) 0.012118872
e p=(1,2,12) indicates MA w/ spikes at 1,2,12 lags. | 0.103520542] 0.143889223
Quarter 3M Std Error ESS RMSE
Dec-99 0.02995 0.0007 0.1522] 0.000855613
Sep-99 0.11139 0.0007 0.1522] 0.012251968
Jun-99 0.21891 0.0007 0.1522} 0.047615707
Mar-99 0.01009 -0.147 0.1076] 0.024677443
e q=(1) indicates MA w/ spikes at 1st lag. 0.085400731] 0.130691033
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Quarter Philip Morris Forecast Std Error ESS RMSE
Mar-00 -0.0559 0.0083 0.175] 0.004126482
Dec-99 -0.3564 0.0083 0.175] 0.132969629
Sep-99 -0.1344 0.0083 0.175] 0.020372837
Jun-99 0.15484 0.0083 0.175] 0.021474645
Mar-99 -0.3947 -0.0508 0.1448] 0.118297394
e g=(1) indicates MA w/ spikes at_1st lag. 0.297240988] 0.243820011
Quarter SBC Forecast Std Error ESS RMSE
Mar-00 -0.2439 0.2373 0.1121] 0.231555104
Dec-99 -0.0414 0.2756 0.1089]| 0.100476834
Sep-99 -0.1132 0.3209 0.1036| 0.188477607
Jun-99 0.21532 0.2984 0.102] 0.006902255
Mar-99 -0.1185 0.2867 0.0931] 0.164173962
e p=(1,3,26) indicates MA w/ spikes at _1,3,26 lags. | 0.691585763] 0.37191014
Quarter Texaco Forecast Std Error ESS RMSE
Mar-00 0.00671 0.0062 0.1284] 2.63377E-07
Dec-99 -0.1344 -0.0134 0.1284] 0.014649562
Sep-99 0.02666 -0.0034 0.1268] 0.000903347
Jun-99 0.1089 0.0002 0.1253]| 0.011815186
Mar-99 0.08634 -0.1007 0.0975] 0.034985364
e p=(1,2,22) g=(1) indicates AR at1,2,22lags & MA at1lag | 0.062353723] 0.111672488

2. Model vs. ARMA

The following is a comparison of the Model RMSE and ARMA RMSE. The last
column shows the difference obtained by subtracting ARMA RMSE from the Model RMSE.
Any negative value would indicate that ARMA RMSE>Model RMSE meaning that the

Model has a better out-of-sample forecasting power.
Table 16. Model vs. ARMA

Company Model RMSE ARMA RMSE Model RMSE - ARMA RMSE
AT&T 0.000805217 0.081074343 -0.080269126
Caterpillar 0.008411008 0.20588372 -0.197472713
Chevron 0.018878357 0.108144714 -0.089266357
Du Pont 0.128729533 0.148504033 -0.019774499
Exxon 0.000425439|N/A N/A

GM 0.069199542 0.098727606 -0.029528064
Goodyear 0.005079097 0.279652886 -0.274573789
int'l Paper 0.02325495|N/A N/A

JP Morgan 0.001103416 0.181492892 -0.180389476
Kodak 0.011757591 0.143889223 -0.132131631
M 0.017417936 0.130691033 -0.113273097
Philip Morris 0.088943441 0.243820011 -0.15487657
SBC 0.098330159 0.37191014 -0.273579981
Texaco 0.044173777 0.111672488 -0.067498711
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In all of the cases where ARMA process could be identified, the model produced
smaller RMSE than ARMA indicating that this model has better out-of-sample forecasting
power than ARMA.

V. Empirical Applications
I have constructed a hypothetical portfolio consisting of 1 share each of these 14
Dogs of the Dow stocks and compared its performance with the return on the market index so

as to evaluate the Dogs of the Dow strategy using real asset-pricing model involving

consumption.

Table 17. HARA Estimates of Portfolio

portfolio parameter estimates 1 > HyDARA

B1=0; 1.007331729 1.023517657 =1 —, CARA

B=p -0.981918725 k=0 — quadratic U fn
L=y -0.033374462 x=(1+y)1y 30.96302991
Bs=B.*¢ 399.4724302 =P/, -11969.40438

First, to diagnose whether HARA is a relevant assumption I have checked the

following kappa statistic, which turned out to support HARA.

Table 18. Portfolio Kappa Statistic
oy o’k = (—1/) oy ox tx = (x-1)/ ox
portfolio 0.0128922 10391.29175 101.9376856 0.2939348

Even for the multicollinearity, the following tests checked out favorably indicating

only moderate degree of multicollinearity.
Table 19. Correlation Check for Portfolio

Correlation Matrix hi o o A4d, P (L/C,-L/C,_y)
h; 1
S 0.2296 1
S 0.1154  0.887 1
Ady, 0.065 -0.2518 0.1978 1
P 0.1764 0.0103 -0.0028  0.042272 1
(/C,-V/C,y) 0.0166 -0.2333 -0.237 0.0158942  -0.2453106 1

Table 20. Auxiliary Fijg;ression of the Portfolio

Dependent St S Ad, Fot (1/C,-1/C,.,) Overall R*

R;" portfolio 0.978179597 0.977802944 0.802097451 0.115410416 0.129685914 0.9409447
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Table 21. Condition Number of the Portfolio Overall, the portfolio is a well-balanced

Eigen values | Condition No. " . "
cigenval 001003 and well-behaved one meeting all the
eigenva2 0.703573 theoretical and statistical criteria, which
eigenval 1.091521 .
eigenvad 1.188357 means that we may safely proceed with
eigenvas 2.006518 the Dividend-Yield strategy set out in the

k=(Aaras/Amin) " 14.14362

beginning of this paper.

A. Portfolio by Dividend Yield Strategy
The following are the forecast of the portfolio for 5 quarters out of sample and their RMSE.

Table 22. Portfolio Returns over 5 Quarter Out-of-Sample Forecasting Horizon

14 stock 7/ 2 Uit Uy uAd, | UC,-1C,y)
portfolio
Mar-00 -0.06752 -4.599883882 -4.517981364 0 -0.10774704 -2.9876SE-06
Dec-99 -0.04506 -5.023362515 -4.968706 0.010298665 0.180387388 -2.67431E-06
Sep-99 -0.05384 -4.867151798 -5.023362515 -0.228853752 -0.108604648 -2.89253E-06
Jun-99 0.154911 -4.981885146 -4.867151798 0.242718717 0.008624896 -3.19655E-06
Mar-99 -0.00111 -4.987607797 -4.981885146 0.001287036 -0.132738588 -2.44952E-06

All the variables are in natural log.
Table 23. Accuracy of the Qut-of-Sample Forecasts of the Portfolio

Out-of-Sample Forecast Forecast Error ESS RMSE
-0.0645 -0.0030559 9.339E-06 0.01240291
-0.0469 0.0018668 3.485€E-06
-0.0719 0.0180684 0.0003265
0.1388 0.0161406 0.0002605
0.0028 -0.0039393 1.552E-05

This 5 period out-of-sample testing is based on the regression result over 9 year data
range (1989~1998) of the portfolio and produced RMSE of 0.01240291, which is curiously
slightly higher than the RMSE of 0.011304839 from the regression over just 1 year data
range reported in the following section. This is probably for the same reason as Campbell &
Shiller’s finding about the short-term coherence between the theoretical and actual variables
although the coherence decreases greatly over the long run. (See pp. 12~14 of this

dissertation.)



B. Out-of-Sample Performance of Portfolio '98 vis-a-vis Market
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The following is the corresponding test result to the above except for the fact that the

data range used is limited to only 1 year of 1998.

Table 24. '98 Dogs Portfolio Returns over 5 Quarter Out-of-Sample Forecasting Horizon

14 stock ph; HOiy MO uad; Tme (/C,-1/C,y)
portfolio
Mar-00 -0.067515495 -4.599883882 -4.517981364 0 -0.10774704 -2.98769E-06
Dec-99 -0.045061575 -5.023362515 -4 968706 0.010298665 0.180387388 -2.67431E-06
Sep-99 -0.053835424 -4867151798 -5.023362515 -0.228853752 -0.108604648 -2.89253E-06
Jun-99 0.154910543 -4.981885146 -4.867151798 0.242718717 0.008624896 -3.19655E-06
Mar-99 -0.001113337 -4.987607797 -4.981885146 0.001287036 -0.132738588 -2.44952E-06

This type of forecasting should be effective for the case where one has only limited amount

of data available for such stocks that are relatively new in the market especially as the test

produces low RMSE.

Table 25. Accuracy of the Out-of-Sample Forecasts of the '98 Dogs Portfolio

Out-of-Sample Forecast Forecast Error ESS RMSE
-0.070887475 0.00337198) 1.13702E-05 0.011304839
-0.049280047| 0.004218472) 1.77955E-05
-0.067209277| 0.013373853 0.00017886

0.145010952] 0.009899591] 9.80019E-05
0.013210416| -0.014323753 0.00020517

The following table shows the performance of this portfolio vis-a-vis the market.

Table 26. ‘98 Dogs Portfolio performance vis-a-vis the Market

DJI

SP500

DJl-portfolio

Date b,
Mar-00 -0.067515495
Dec-99 -0.045061575
Sep-99 -0.053835424
Jun-99 0.154910543
Mar-99 -0.001113337

0.106365138
-0.059507506
0.114263968
0.063793532

0.022674962
0.138710235
-0.064478896
0.068109889
0.048622402

0.067515495
0.151426713
-0.005672082
-0.040646576
0.064906868

0.080190457
0.183771809
-0.010643472
-0.086800655

0.049735739

For the overall observed period, the Dogs of the Dow portfolio seems to have

slightly under-performed the market. However, during the 3™ quarter of '99, when the

SP500—portfolio |

markets and the portfolio all show negative log returns, the portfolio clearly fared better

reaffirming the popular consensus of the financial market that the Dogs do better than the

market in the down-market and underperform the market in the up-market. However, during

the 2™ quarter the portfolio overperformed the market even in the up-market.
q Y rp p
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It is not surprising that the portfolio did not do much better than the market if the
random walk holds in the short run for the quarterly return. However, doing better than the
market during the down-market is the strength of this portfolio. This might suggest a
practical strategy to beat the downside risk of the short run random walk.

On the other hand, if random walk absolutely holds, then strategies are pointless. As
long as the efficient market prevents strategies from beating the market in the short run, it
would rather be a wise choice to ride along the market during the up-market and
minimize the losses during the down-market than trying to beat the market at all

times. This portfolio seems to provide exactly this kind of protection.
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VL. Conclusion

Despite limited multicollinearity in some data series, the overall test results proved
to be quite robust in the light of the different other variants of tests performed such as
auxiliary regressions, data pooling, and detrending. All of the regressions estimated £, and
s to be not significantly different from 1 exactly as prescribed by the model and f>to be
within the reasonably consistent range with Campbell & Shiller’s estimates. The parameter
of our interest 5, which adds the contribution of HARA to the model actually proved to be
quite significant in 8 out of 14 cases. On the other hand, £, the parameter that represents the
traditional explanatory variable based on CRRA, actually performed poorly producing only
1 significant estimate out of 14 cases.

However, the auxiliary regressions of the portfolio over the entire data range that
produced higher R%s for &.1 and & as dependent variables might most likely indicate that
especially in the portfolio case all the given variables explain the log dividend-price ratio
better than the other ways around. This may also be the reason why Campbell & Shiller
chose the VAR model. As the lag and lead relation is most explicit in the dividend price
ratio, there may be endogeneity between each of the regressors as discussed in the chapters
on HARA of this dissertation. When these two aspects are both present in the model, it
would be necessary to encompass all the possible Granger causalities. Then, VAR would
come up as a logical solution to these issues.

[ also considered other possible reasons why Campbell & Shiller chose VAR out of
all the possible modeling options. However, they did not explicitly provide any compelling
rationale as to why VAR would make their best choice among all the competing models. It
is quite conceivable that in studying the portfolio performance the log dividend-price ratio
might be an ideal candidate for the dependent variable if it happens to be the variable of our
interest as well. Perhaps that is why Campbell & Shiller deliberately chose to model it with
respect to log dividend-price ratio. Therefore, the dividend-price ratio model based on
HARA assumption could possibly be the next step in further research.

However, as discussed previously in chapter III of this dissertation, Campbell &
Shiller’s VAR did not quite produce desirable results as their VAR tests rejected more and
more as the returns horizon increased. In the limit, at /=0 the Hy: “&; equals the unrestricted

VAR forecast of the present value of future real dividend growth.” was rejected at better



than 0.1% level. And the weak relation between the theoretical &, and the actual & strongly
contradicted their model. In this light, my HARA-based CCAPM with time-varying
technique was concluded to be a better model than VAR at least for this study.

Also, earnings ratio or its variants has been empirically an important variable in a
number of popular asset-pricing models. However, it seems that so far they have been rather
added in the model arbitrarily on empirical ground without sufficient theoretical
corroboration to legitimately derive them into the model. Therefore, further studies to
theoretically incorporate earnings variable into the HARA-based CCAPM type model would
be in order.

[ have also diagnosed HARA possibility and validated theoretically and empirically
the popular Dogs-of-the Dow strategy. With HARA I have reinstated the relevance of risk
aversion in the asset-pricing model. Transient income does not affect consumption.
Therefore, change in transient income is not matched by a commensurate change in
consumption, and consumption tends to be smooth. The built-in progressively decreasing
curvature of the HARA-based consumption ensures this smooth response of
consumption to income. Therefore, it is only natural that the variance of consumption
becomes smaller than the stock market volatility past a certain point on the curve. This
means that HARA is a more realistic explanation for why consumption tends to be smooth
vis-a-vis the market. Even if HARA-based consumption may not completely track income in
reality, the model still closely tracked and forecasted the returns path. This may be
another strength of HAR A-based model

CRRA cannot explain progressively smoothing consumption as income increases,
because CRRA assumes proportional changes in consumption in response to changes in
relative income. This would imply that there is a point or a separating equilibrium where
MPChara is tangent to MPCcrra somewhere along the curvature of the consumption. Past

this point MPCyara Will become less than MPCcrga.
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Figure 2. Separating Equilibrium between HARA and CRRA.

Certainly it is not a puzzle in itself that consumption is too smooth, but that the risk
premium is too high to be explained by the smooth consumption is. This dissertation might
only partially answer the second puzzle, but it may answer at least the first puzzle. Under
the permanent income hypothesis, CRRA may be a relevant assumption, but with changes in
transitory income, HARA may be the relevant one. Intuitively, it indicates that no matter
whether the windfall gain in income is great or small, as long as it is transient, people’s
general attitude toward risk should be absolutely averse, not relatively averse.

This study also examined how and why consumption variable may drop out in steady
state or under the assumption of the Lucas Tree model. In steady state consumption growth
rate is a constant such as g including 0. If it is O under CRRA assumption, utility function
may be irrelevant. In non-equilibrium, however, due to incomplete substitution between
consumption and dividend, which is more realistic, utility function may still be a relevant
variable as suggested by the HARA assumption and kappa statistic.

The model also outperformed a simple DGP such as ARMA in an out-of-sample
testing, which is rare for a structural model. Empirically, the hypothetical portfolio using
dividend yield strategy also fared well vis-a-vis the market suggesting the practical value of
this model. Therefore, the main contribution of this dissertation may be summed up in 3

points: 1) The risk-aversion mechanism in the utility function was diagnosed and HARA was

W
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found to be quite a relevant factor. This also conforms to Vinod’s (1999) test result that
HAR A models are statistically significantly different from the traditional CRRA ; ii) It was
verified that the utility function is an integral part of the long run asset-pricing. Even aside
from the theoretical exercise, it is also logically quite probable that the more the true
consumption path is revealed in the long run, and thus the permanent income path as well,
the better the asset return would track the consumption.; iii) The popular Dividend yield
strategy is theoretically and empirically reaffirmed to be a very effective strategy in
portfolio management. It is also suggested to be a strategy to beat the downside risk of the

short-run random walk.
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Hyperbolic Utility Consumption Capital Asset Pricing Model with Time Variation

Dissertation directed by Hrishikesh Vinod, Ph.D.

In the past the studies done about consumption and the financial market generally
produced results that would only work to discount the credibility of consumption-based asset
pricing models. This study was motivated by the idea that a model based on hyperbolic utility
risk aversion mechanism might be an alternative solution to close this gap between
consumption and actual financial market. Accordingly, this study showed that Hyperbolic
Utility CCAPM with time-varying technique was a better model than Vector Autoregression
model of Campbell & Shiller at least for the scope of this study.

The model also reinstated relevance of risk aversion & utility function in constructing
an asset-pricing model. It also showed that Hyperbolic Absolute Risk Aversion offers a more

realistic explanation why consumption tends to be smooth vis-a-vis the market. Even if



HARA consumption may not completely track income, the model still closely tracked and
forecasted the returns path.

On the other hand, the traditional risk aversion mechanism of Constant Relative Risk
Aversion was shown to be unable to explain progressively smoothing consumption, because
CRRA assumes proportional changes in consumption in response to changes in relative
income. From this, we may infer that there may exist a point or a separating equilibrium
where MPCrara=MPCcrra past which MPCyara<MPCcrra somewhere on the consumption
curve. Therefore, it answers at least the puzzle why consumption is too smooth, and partially
the puzzle why risk premium is too high to be explained by the smooth consumption.

This dissertation also shows how and why consumption may drop out in steady state
and/or under Lucas Tree model. The model also outperformed a simple Data Generating
Process (ARMA) in an out-of-sample testing. The hypothetical portfolio consisting of assets
selected by the criteria that the model suggests also fared well vis-a-vis the market,

supporting the practical value of Model.
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